Trong không gian chỉ có 5 loại khối đa diện đều như hình vẽ
Mệnh đề nào sau đây đúng?
A. Khối tứ diện đều và khối bát diện đều là các khối có 1 tâm đối xứng.
B. Khối bát diện đều và khối lập phương có cùng số cạnh.
C. Cả năm khối đa diện đều đều có số mặt chia hết cho 4.
D. Khối hai mươi mặt đều và khối mười hai mặt đều thì có cùng số đỉnh.
Lời giải của giáo viên
Khối bát diện đều và khối lập phương có cùng số cạnh là 12.
CÂU HỎI CÙNG CHỦ ĐỀ
Với \(a\) là số thực dương, \(\ln \left( 7a \right)-\ln \left( 3a \right)\) bằng
Cho tứ diện \(ABCD\) có các cạnh \(AB,AC\) và \(AD\) đôi một vuông góc. Các điểm \(M,N,P\) lần lượt là trung điểm của các đoạn thẳng \(BC,CD,BD. \) Biết rằng \(AB=4a;AC=6a;AD=7a. \) Thể tích \(V\) của khối tứ diện \(AMNP\) bằng
Cho khối trụ tròn xoay có bán kính đường tròn đáy \(R=4a. \) Hai điểm \(A\) và \(B\) di động trên hai đường tròn đáy của khối trụ. Tính thể tích \(V\) của khối trụ tròn xoay đó biết rằng độ dài lớn nhất của đoạn \(AB\) là \(10a. \)
Số đường tiệm cận ngang của đồ thị hàm số \(y=\frac{\sqrt{10000-{{x}^{2}}}}{x-2}\) là
Cho hàm số \(y=\sqrt{{{x}^{3}}-3x}. \) Nhận định nào dưới đây là đúng?
Trong khai triển \({{\left( xy-\frac{3}{{{y}^{4}}} \right)}^{12}}\) hệ só của số hạng có số mũ của \(x\) gấp 5 lần số mũ của \(y\) là
Cho hàm số \(y=\frac{x-2}{x-m}\) nghịch biến trên khoảng \(\left( -\infty ;3 \right)\) khi:
Cho lăng trụ tam giác \(ABC.A'B'C'\) có đáy là tam giác đều cạnh \(2a. \) Biết \(A'\) cách đều ba đỉnh \(A,B,C\) và mặt phẳng \(\left( A'BC \right)\) vuông góc với mặt phẳng \(\left( AB'C' \right). \) Thể tích của khối lăng trụ \(ABC.A'B'C'\) tính theo \(a\) bằng
Cho hàm số \(y=f\left( x \right)=a{{x}^{3}}+b{{x}^{2}}+cx+d\) có đồ thị như hình vẽ.
Khi đó phương trình \(f\left( {{f}^{2}}\left( x \right) \right)=1\) có bao nhiêu nghiệm?
Cho hàm số \(y=f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và đồ thị hàm số \(y=f'\left( x \right)\) như hình bên. Khẳng định nào sau đây là đúng?
Số giá trị nguyên của tham số \(m\) để hàm số \(y=m{{x}^{4}}-\left( m-3 \right){{x}^{2}}+{{m}^{2}}\) không có điểm cực đại là
Đường cong ở hình bên là đồ thị của hàm số nào sau đây?
Số điểm cực trị của đồ thị hàm số \(y=-{{x}^{3}}+1\) là
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau.
Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số \(g\left( x \right)=\frac{1}{2f\left( x \right)-1}\) là
Trên mặt phẳng \(Oxy,\) gọi \(S\) là tập hợp các điểm \(M\left( x;y \right)\) với \(x,y\in \mathbb{Z},\left| x \right|\le 3,\left| y \right|\le 3. \) Lấy ngẫu nhiên một điểm \(M\) thuộc \(S. \) Xác suất để điểm \(M\) thuộc đồ thị hàm số \(y=\frac{x+3}{x-1}\) bằng