Trong không gian Oxyz , cho ba điểm \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaabm % aabaGaaGimaiaacUdacaaIWaGaai4oaiaaigdaaiaawIcacaGLPaaa % caGGSaGaamOqamaabmaabaGaeyOeI0IaaGymaiaacUdacaaIXaGaai % 4oaiaaicdaaiaawIcacaGLPaaacaGGSaGaam4qamaabmaabaGaaGym % aiaacUdacaaIWaGaai4oaiabgkHiTiaaigdaaiaawIcacaGLPaaaaa % a!4B26! A\left( {0;0;1} \right),B\left( { - 1;1;0} \right),C\left( {1;0; - 1} \right)\). Điểm M thuộc mặt phẳng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca % WGqbaacaGLOaGaayzkaaGaaiOoaiaaikdacaWG4bGaey4kaSIaaGOm % aiaadMhacqGHsislcaWG6bGaey4kaSIaaGOmaiabg2da9iaaicdaaa % a!42AE! \left( P \right):2x + 2y - z + 2 = 0\) sao cho \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4maiaad2 % eacaWGbbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGOmaiaad2ea % caWGcbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamytaiaadoeada % ahaaWcbeqaaiaaikdaaaaaaa!40CA! 3M{A^2} + 2M{B^2} + M{C^2}\) đạt giá trị nhỏ nhất. Giá trị nhỏ nhất đó bằng
A.
\(% MathType!MTEF!2!1!+-
% feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
% aIXaGaaG4maaqaaiaaiAdaaaaaaa!383B!
\frac{{13}}{6}\)
B.
\(% MathType!MTEF!2!1!+-
% feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
% aIXaGaaG4maaqaaiaaiAdaaaaaaa!383B!
\frac{{17}}{2}\)
C.
\(% MathType!MTEF!2!1!+-
% feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
% aIXaGaaG4maaqaaiaaiAdaaaaaaa!383B!
\frac{{61}}{6}\)
D.
\(% MathType!MTEF!2!1!+-
% feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
% aIXaGaaG4maaqaaiaaiAdaaaaaaa!383B!
\frac{{23}}{2}\)
Lời giải của giáo viên
Gọi I(x,y,z) thỏa mãn \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4mamaaFi % aabaGaamysaiaadgeaaiaawEniaiabgUcaRiaaikdadaWhcaqaaiaa % dMeacaWGcbaacaGLxdcacqGHRaWkdaWhcaqaaiaadMeacaWGdbaaca % GLxdcacqGH9aqpdaWhcaqaaiaaicdaaiaawEniaiabgkDiElaadMea % daqadaqaaiabgkHiTmaalaaabaGaaGymaaqaaiaaiAdaaaGaai4oam % aalaaabaGaaGymaaqaaiaaiodaaaGaai4oamaalaaabaGaaGymaaqa % aiaaiodaaaaacaGLOaGaayzkaaaaaa!5239! 3\overrightarrow {IA} + 2\overrightarrow {IB} + \overrightarrow {IC} = \overrightarrow 0 \Rightarrow I\left( { - \frac{1}{6};\frac{1}{3};\frac{1}{3}} \right)\)
Ta có \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiabg2 % da9iaaiodacaWGnbGaamyqamaaCaaaleqabaGaaGOmaaaakiabgUca % RiaaikdacaWGnbGaamOqamaaCaaaleqabaGaaGOmaaaakiabgUcaRi % aad2eacaWGdbWaaWbaaSqabeaacaaIYaaaaOGaeyypa0JaaG4mamaa % bmaabaWaa8HaaeaacaWGnbGaamysaaGaay51GaGaey4kaSYaa8Haae % aacaWGjbGaamyqaaGaay51GaaacaGLOaGaayzkaaWaaWbaaSqabeaa % caaIYaaaaOGaey4kaSIaaGOmamaabmaabaWaa8HaaeaacaWGnbGaam % ysaaGaay51GaGaey4kaSYaa8HaaeaacaWGjbGaamOqaaGaay51Gaaa % caGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSYaaeWaae % aadaWhcaqaaiaad2eacaWGjbaacaGLxdcacqGHRaWkdaWhcaqaaiaa % dMeacaWGdbaacaGLxdcaaiaawIcacaGLPaaadaahaaWcbeqaaiaaik % daaaaaaa!64D9! P = 3M{A^2} + 2M{B^2} + M{C^2} = 3{\left( {\overrightarrow {MI} + \overrightarrow {IA} } \right)^2} + 2{\left( {\overrightarrow {MI} + \overrightarrow {IB} } \right)^2} + {\left( {\overrightarrow {MI} + \overrightarrow {IC} } \right)^2}\)
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0JaaG % Onaiaad2eacaWGjbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGOm % amaaFiaabaGaamytaiaadMeaaiaawEniaiaac6cadaqadaqaaiaaio % dadaWhcaqaaiaadMeacaWGbbaacaGLxdcacqGHRaWkcaaIYaWaa8Ha % aeaacaWGjbGaamOqaaGaay51GaGaey4kaSYaa8HaaeaacaWGjbGaam % 4qaaGaay51GaaacaGLOaGaayzkaaGaey4kaSIaaG4maiaadMeacaWG % bbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGOmaiaadMeacaWGcb % WaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamysaiaadoeadaahaaWc % beqaaiaaikdaaaGccqGH9aqpcaaI2aGaamytaiaadMeadaahaaWcbe % qaaiaaikdaaaGccqGHRaWkdaagaaqaaiaaiodacaWGjbGaamyqamaa % CaaaleqabaGaaGOmaaaakiabgUcaRiaaikdacaWGjbGaamOqamaaCa % aaleqabaGaaGOmaaaakiabgUcaRiaadMeacaWGdbWaaWbaaSqabeaa % caaIYaaaaaqaaiaadogacaWGVbGaamOBaiaadohacaWG0baakiaawI % J-aaaa!7103! = 6M{I^2} + 2\overrightarrow {MI} .\left( {3\overrightarrow {IA} + 2\overrightarrow {IB} + \overrightarrow {IC} } \right) + 3I{A^2} + 2I{B^2} + I{C^2} = 6M{I^2} + \underbrace {3I{A^2} + 2I{B^2} + I{C^2}}_{const}\)
Suy ra \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa % aaleaaciGGTbGaaiyAaiaac6gaaeqaaOGaeyi1HSTaamytaiaadMea % daWgaaWcbaGaciyBaiaacMgacaGGUbaabeaaaaa!40CA! {P_{\min }} \Leftrightarrow M{I_{\min }}\) hay M là hình chiếu của I trên \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca % WGqbaacaGLOaGaayzkaaGaeyO0H4TaamytaiaadMeadaWgaaWcbaGa % ciyBaiaacMgacaGGUbaabeaakiabg2da9iaadsgadaWadaqaaiaadM % eacaGG7aWaaeWaaeaacaWGqbaacaGLOaGaayzkaaaacaGLBbGaayzx % aaGaeyypa0ZaaSaaaeaacaaIYaaabaGaaG4maaaaaaa!49B1! \left( P \right) \Rightarrow M{I_{\min }} = d\left[ {I;\left( P \right)} \right] = \frac{2}{3}\).
Vậy \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa % aaleaaciGGTbGaaiyAaiaac6gaaeqaaOGaeyypa0JaaGOnaiaac6ca % daqadaqaamaalaaabaGaaGOmaaqaaiaaiodaaaaacaGLOaGaayzkaa % WaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaG4maiaac6cadaWcaaqa % aiaaiEdaaeaacaaIXaGaaGOmaaaacqGHRaWkcaaIYaGaaiOlamaala % aabaGaaGynaaqaaiaaikdaaaGaey4kaSYaaSaaaeaacaaIXaGaaG4m % aaqaaiaaisdaaaGaeyypa0ZaaSaaaeaacaaI2aGaaGymaaqaaiaaiA % daaaaaaa!4F3A! {P_{\min }} = 6.{\left( {\frac{2}{3}} \right)^2} + 3.\frac{7}{{12}} + 2.\frac{5}{2} + \frac{{13}}{4} = \frac{{61}}{6}\).
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaabm % aabaGaaGOmaiaacUdacaaIXaGaai4oaiaaiodaaiaawIcacaGLPaaa % caGGSaGaamOqamaabmaabaGaaGOnaiaacUdacaaI1aGaai4oaiaaiw % daaiaawIcacaGLPaaaaaa!42B0! A\left( {2;1;3} \right),B\left( {6;5;5} \right)\). Gọi (S) là mặt cầu đường kính AB . Mặt phẳng (P) vuông góc với AB tại H sao cho khối nón đỉnh A và đáy là hình tròn tâm H (giao của mặt cầu (S) và mặt phẳng (P) ) có thể tích lớn nhất, biết rằng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca % WGqbaacaGLOaGaayzkaaGaaiOoaiaaikdacaWG4bGaey4kaSIaamOy % aiaadMhacqGHRaWkcaWGJbGaamOEaiabgUcaRiaadsgacqGH9aqpca % aIWaaaaa!43E3! \left( P \right):2x + by + cz + d = 0\) với \(b,c,d \in Z\). Tính S = b+c+d.
Trong không gian Oxyz, cho mặt cầu \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca % WGtbaacaGLOaGaayzkaaGaaiOoamaabmaabaGaamiEaiabgkHiTiaa % igdaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccqGHRaWkda % qadaqaaiaadMhacqGHRaWkcaaIYaaacaGLOaGaayzkaaWaaWbaaSqa % beaacaaIYaaaaOGaey4kaSYaaeWaaeaacaWG6bGaeyOeI0IaaG4maa % GaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiabg2da9iaaikda % caaI3aaaaa!4CB7! \left( S \right):{\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 3} \right)^2} = 27\). Gọi \((\alpha)\) là mặt phẳng đi qua hai điểm \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaabm % aabaGaaGimaiaacUdacaaIWaGaai4oaiabgkHiTiaaisdaaiaawIca % caGLPaaacaGGSaGaamOqamaabmaabaGaaGOmaiaacUdacaaIWaGaai % 4oaiaaicdaaiaawIcacaGLPaaaaaa!438D! A\left( {0;0; - 4} \right),B\left( {2;0;0} \right)\) và cắt (S) theo giao tuyến là đường tròn (C). Xét các khối nón có đỉnh là tâm của (S) và đáy là ( C ). Biết rằng khi thể tích của khối nón lớn nhất thì mặt phẳng \((\alpha)\) có phương trình dạng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaiaadI % hacqGHRaWkcaWGIbGaamyEaiabgkHiTiaadQhacqGHRaWkcaWGKbGa % eyypa0JaaGimaaaa!4014! ax + by - z + d = 0\). Tính P = a + b + c.
Cho hàm số f(x), đồ thị hàm số f’(x) như hình vẽ.
Hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9iaadAgadaqadaqaaiaa % dIhadaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaacqGHsislda % WcaaqaaiaadIhadaahaaWcbeqaaiaaiAdaaaaakeaacaaIZaaaaiab % gUcaRiaadIhadaahaaWcbeqaaiaaisdaaaGccqGHsislcaWG4bWaaW % baaSqabeaacaaIYaaaaaaa!4824! g\left( x \right) = f\left( {{x^2}} \right) - \frac{{{x^6}}}{3} + {x^4} - {x^2}\) đạt cực tiểu tại bao nhiêu điểm?
Trong các số phức z thỏa mãn \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaada % WcaaqaamaabmaabaGaaGymaiaaikdacqGHsislcaaI1aGaamyAaaGa % ayjkaiaawMcaaiaadQhacqGHRaWkcaaIXaGaaG4naiabgUcaRiaaiE % dacaWGPbaabaGaamOEaiabgkHiTiaaikdacqGHsislcaWGPbaaaaGa % ay5bSlaawIa7aiabg2da9iaaigdacaaIZaaaaa!4BAE! \left| {\frac{{\left( {12 - 5i} \right)z + 17 + 7i}}{{z - 2 - i}}} \right| = 13\). Tìm giá trị nhỏ nhất của |z|.
: Trong các số phức z thỏa mãn \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaaca % WG6bWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGymaaGaay5bSlaa % wIa7aiabg2da9iaaikdadaabdaqaaiaadQhaaiaawEa7caGLiWoaaa % a!4287! \left| {{z^2} + 1} \right| = 2\left| z \right|\) gọi \(z_1\) và \(z_2\) lần lượt là các số phức có môđun nhỏ nhất và lớn nhất. Giá trị của biểu thức \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaaca % WG6bWaaSbaaSqaaiaaigdaaeqaaaGccaGLhWUaayjcSdWaaWbaaSqa % beaacaaIYaaaaOGaey4kaSYaaqWaaeaacaWG6bWaaSbaaSqaaiaaik % daaeqaaaGccaGLhWUaayjcSdWaaWbaaSqabeaacaaIYaaaaaaa!42D6! {\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2}\) bằng
Gọi \(z_1;z_2\) là các nghiệm phức của phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEamaaCa % aaleqabaGaaGOmaaaakiabgkHiTiaaikdacaWG6bGaey4kaSIaaGyn % aiabg2da9iaaicdaaaa!3DEE! {z^2} - 2z + 5 = 0\). Giá trị của biểu thức \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEamaaDa % aaleaacaaIXaaabaGaaGOmaaaakiabgUcaRiaadQhadaqhaaWcbaGa % aGOmaaqaaiaaikdaaaaaaa!3C26! z_1^2 + z_2^2\) bằng
Trong không gian Oxyz, cho mặt cầu \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca % WGtbaacaGLOaGaayzkaaGaaiOoaiaadIhadaahaaWcbeqaaiaaikda % aaGccqGHRaWkcaWG5bWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaam % OEamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaikdacaWG4bGaeyOe % I0IaaGOmaiaadMhacqGHRaWkcaaI2aGaamOEaiabgkHiTiaaigdaca % aIXaGaeyypa0JaaGimaaaa!4CBA! \left( S \right):{x^2} + {y^2} + {z^2} - 2x - 2y + 6z - 11 = 0\). Tọa độ tâm mặt cầu (S) là I(a,b,c). Tính a + b + c.
Trong không gian Oxyz, cho mặt cầu \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca % WGtbaacaGLOaGaayzkaaGaaiOoamaabmaabaGaamiEaiabgkHiTiaa % igdaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccqGHRaWkda % qadaqaaiaadMhacqGHsislcaaIYaaacaGLOaGaayzkaaWaaWbaaSqa % beaacaaIYaaaaOGaey4kaSYaaeWaaeaacaWG6bGaeyOeI0IaaGymaa % GaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiabg2da9iaaioda % daahaaWcbeqaaiaaikdaaaaaaa!4CE9! \left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 1} \right)^2} = {3^2}\) , mặt phẳng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca % WGqbaacaGLOaGaayzkaaGaaiOoaiaadIhacqGHsislcaWG5bGaey4k % aSIaamOEaiabgUcaRiaaiodacqGH9aqpcaaIWaaaaa!4137! \left( P \right):x - y + z + 3 = 0\) và điểm N(1;0;-4) thuộc (P). Một đường thẳng \(\Delta\) đi qua N nằm trong (P) cắt (S) tại hai điểm A,B thỏa mãn AB =4. Gọi \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8Haaeaaca % WG1baacaGLxdcacqGH9aqpdaqadaqaaiaaigdacaGG7aGaamOyaiaa % cUdacaWGJbaacaGLOaGaayzkaaGaaiilamaabmaabaGaam4yaiabg6 % da+iaaicdaaiaawIcacaGLPaaaaaa!441B! \overrightarrow u = \left( {1;b;c} \right),\left( {c > 0} \right)\) là một vecto chỉ phương của \(\Delta\), tổng b+c bằng
Diện tích hình phẳng giới hạn bởi đồ thị hàm số bậc ba y = f(x) và các trục tọa độ là S = 32 (hình vẽ bên). Tính thể tích vật tròn xoay được tạo thành khi quay hình phẳng trên quanh trục Ox.
Cho hàm số y =f(x), biết tại các điểm A,B,C đồ thị hàm số có tiếp tuyến được thể hiện trên hình vẽ bên. Mệnh đề nào dưới đây đúng?
Cho hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2 % da9maalaaabaGaaGOmaiaadIhacqGHsislcaaIZaaabaGaamiEaiab % gkHiTiaaikdaaaaaaa!3E10! y = \frac{{2x - 3}}{{x - 2}}\) có đồ thị (C). Gọi I là giao điểm của các đường tiệm cận của (C). Biết rằng tồn tại hai điểm M thuộc đồ thị (C) sao cho tiếp tuyến tại M của ( C) tạo với các đường tiệm cận một tam giác có chu vi nhỏ nhất. Tổng hoành độ của hai điểm M là
Cho số phức z thỏa mãn \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEamaabm % aabaGaaGOmaiabgkHiTiaadMgaaiaawIcacaGLPaaacqGHRaWkcaaI % XaGaaGOmaiaadMgacqGH9aqpcaaIXaaaaa!401A! z\left( {2 - i} \right) + 12i = 1\) . Tính môđun của số phức z.
Cho hình nón có đường cao và đường kính đáy cùng bằng 2a. Cắt hình nón đã cho bởi một mặt phẳng qua trục, diện tích thiết diện bằng
Tính tích các nghiệm thực của phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmamaaCa % aaleqabaGaamiEamaaCaaameqabaGaaGOmaaaaliabgkHiTiaaigda % aaGccqGH9aqpcaaIZaWaaWbaaSqabeaacaaIYaGaamiEaiabgUcaRi % aaiodaaaaaaa!3FC8! {2^{{x^2} - 1}} = {3^{2x + 3}}\).
Trong không gian với hệ tọa độ Oxyz, cho \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaabm % aabaGaamyyaiaacUdacaaIWaGaai4oaiaaicdaaiaawIcacaGLPaaa % caGGSaGaamOqamaabmaabaGaaGimaiaacUdacaWGIbGaai4oaiaaic % daaiaawIcacaGLPaaacaGGSaGaam4qamaabmaabaGaaGimaiaacUda % caaIWaGaai4oaiaadogaaiaawIcacaGLPaaaaaa!49CE! A\left( {a;0;0} \right),B\left( {0;b;0} \right),C\left( {0;0;c} \right)\) và a,b,c dương. Biết rằng khi A,B,C di động trên các tia Ox,Oy,Oz sao cho a+b+c=2018 và khi a,b,c thay đổi thì quỹ tích tâm hình cầu ngoại tiếp tứ diện OABC luôn thuộc mặt phẳng (P) cố định. Tính khoảng cách từ M(1;0;0) tới mặt phẳng (P).