Trong không gian \(Oxyz\) cho ba vectơ \(\overrightarrow a = \left( {3; - 2;4} \right),\)\(\mathop b\limits^ \to = \left( {5;1;6} \right)\), \(\mathop c\limits^ \to = \left( { - 3;0;2} \right)\). Tìm vectơ \(\overrightarrow x \) sao cho vectơ \(\overrightarrow x \) đồng thời vuông góc với \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \)
A. \(\left( {1;0;0} \right).\)
B. \(\left( {0;0;1} \right).\)
C. \(\left( {0;1;0} \right).\)
D. \(\left( {0;0;0} \right).\)
Lời giải của giáo viên
Dễ thấy chỉ có \(\overrightarrow x = (0;0;0)\)thỏa mãn \(\overrightarrow x .\overrightarrow a = \overrightarrow x .\overrightarrow b = \overrightarrow x .\overrightarrow c = 0.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Đổi biến u = lnx thì tích phân \(I = \int\limits_1^e {\dfrac{{1 - \ln x}}{{{x^2}}}\,dx} \) thành:
Tính thể tích của khối lăng trụ tam giác đều có tất cả các cạnh bằng a
Cho hình nón tròn xoay có thiết diện qua trục là một tam giác vuông cân. Trong các khẳng định sau khẳng định nào sai?
Tính nguyên hàm \(\int {{x^2}\sqrt {{x^3} + 5} } \,dx\) ta được kết quả là :
Hàm số \(f(x) = x\sqrt {x + 1} \) có một nguyên hàm là F(x). Nếu F(0) = 2 thì F(3) bằng bao nhiêu ?
Cho tứ diện \(ABCD\) có \(AD \bot \left( {ABC} \right)\), \(DB \bot BC\), \(AB = AD = BC = a\). Kí hiệu \({V_1}\), \({V_2}\), \({V_3}\) lần lượt là thể tích của hình tròn xoay sinh bởi tam giác \(ABD\) khi quay quanh \(AD\), tam giác \(ABC\) khi quay quanh \(AB\), tam giác \(DBC\) khi quay quanh \(BC\). Trong các mệnh đề sau, mệnh đề nào đúng?
Giải phương trình \({2 \over {1 - {e^{ - 2x}}}} = 4\).
Giả sử y = f(x) có đạo hàm cấp hai trên (a ; b). Nếu \(\left\{ \matrix{f'({x_0}) = 0 \hfill \cr f''({x_0}) < 0 \hfill \cr} \right.\) thì
Cho số phức z thỏa mãn \(|z + 1 - i|\,\, \le \,3\)là số thực. Tập hợp điểm M biểu diễn số phức z là:
Cho tam giác \(ABC\) vuông tại \(A\), có \(AB = 3cm,\,AC = 4cm\). Gọi \({V_1},\,\,{V_2},\,\,{V_3}\) lần lượt là thể tích của khối tròn xoay hình thành khi quay tam giác \(ABC\) quanh \(AB,\,AC\) và \(BC\). Trong các kết luận sau, kết luận nào đúng?
Tìm giá trị lớn nhất của hàm số \(y = \dfrac{{3x - 1}}{ {x - 3}}\) trên đoạn [0 ; 2].
Tính tích phân \(I = \int\limits_0^{\dfrac{\pi }{2}} {\left( {\cos x + {e^x}} \right)\,dx} \).
Điều kiện xác định của hệ phương trình sau \(\left\{ \matrix{{\log _2}({x^2} - 1) + {\log _2}(y - 1) = 1 \hfill \cr {3^x} = {3^y} \hfill \cr} \right.\) là:
Tính tích phân \(\int\limits_{ - \dfrac{\pi }{3}}^{\dfrac{\pi }{3}} {{x^3}\cos x\,dx} \) ta được: