Trong không gian \(Oxyz\) cho các điểm \(M\left( {2;1;4} \right),\,N\left( {5;0;0} \right),\,P\left( {1; - 3;1} \right).\) Gọi \(I\left( {a;b;c} \right)\) là tâm của mặt cầu tiếp xúc với mặt phẳng \(\left( {Oyz} \right)\) đồng thời đi qua các điểm \(M,N,P.\) Tìm \(c\) biết rằng \(a + b + c < 5.\)
A. \(3\)
B. \(2\)
C. \(4\)
D. \(1\)
Lời giải của giáo viên
Gọi \(I\left( {a;b;c} \right)\) là tâm mặt cầu tiếp xúc với \(\left( {Oyz} \right)\) đồng thời đi qua \(M,N,P\).
Ta có : \(\left\{ \begin{array}{l}IM = IN\\IM = IP\\d\left( {I;\left( {Oyz} \right)} \right) = IN\end{array} \right.\).
Ta có:
\(\begin{array}{l}\overrightarrow {IM} = \left( {2 - a;1 - b;4 - c} \right)\\\overrightarrow {IN} = \left( {5 - a; - 3 - b;1 - c} \right)\\\overrightarrow {IP} = \left( {1 - a; - 3 - b;1 - c} \right)\\d\left( {I;\left( {Oyz} \right)} \right) = \left| a \right|\end{array}\)
\(\begin{array}{l} \Rightarrow \left\{ \begin{array}{l}{\left( {2 - a} \right)^2} + \left( {1 - {b^2}} \right) + {\left( {4 - c} \right)^2} = {\left( {5 - a} \right)^2} + {b^2} + {c^2}\\{\left( {2 - a} \right)^2} + \left( {1 - {b^2}} \right) + {\left( {4 - c} \right)^2} = {\left( {1 - a} \right)^2} + {\left( {3 + b} \right)^2} + {\left( {1 - c} \right)^2}\\{a^2} = {\left( {5 - a} \right)^2} + {b^2} + {c^2}\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} - 4a + 4 - 2b + 1 - 8c + 16 = - 10a + 25\\ - 4a + 4 - 2b + 1 - 8c + 16 = - 2a + 1 + 6b + 9 - 2c + 1\\{a^2} = {\left( {5 - a} \right)^2} + {b^2} + {c^2}\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}6a - 2b - 8c = 4\\ + 2a + 8b + 6c = 10\\ - 10a + {b^2} + {c^2} = - 25\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = 1 - c\\a = 1 + c\\ - 10\left( {1 + c} \right) + {\left( {1 - c} \right)^2} + {c^2} = - 25\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}b = 1 - c\\a = 1 + c\\2{x^2} - 12c + 16 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}c = 2\\a = 3\\b = - 1\end{array} \right.\,\,\left( {tm} \right)\\\left\{ \begin{array}{l}c = 4\\a = 5\\b = - 3\end{array} \right.\,\,\left( {ktm} \right)\end{array} \right. \Rightarrow c = 2\end{array}\)
Chọn B.
CÂU HỎI CÙNG CHỦ ĐỀ
Gọi \({x_1},\,{x_2}\) là các nghiệm phức của phương trình \({z^2} + 4z + 7 = 0\) . Số phức \({z_1}\overline {{z_2}} + \overline {{z_1}} {z_2}\) bằng
Cho hàm số \(f\left( x \right)\) dương thỏa mãn \(f\left( 0 \right) = e\) và \({x^2}f'\left( x \right) = f\left( x \right) + f'\left( x \right),\,\forall x \ne \pm 1\). Giá trị \(f\left( {\dfrac{1}{2}} \right)\) là:
Cho hình chóp tứ giác đều \(S.ABCD\) có \(SA = \sqrt {11} a,\) côsin của góc hợp bởi hai mặt phẳng \(\left( {SBC} \right)\) và \(\left( {SCD} \right)\) bằng \(\frac{1}{{10}}\). Thể tích của khối chóp \(S.ABCD\) bằng
Trong không gian tọa độ Oxyz, mặt phẳng chứa trục Oz và đi qua điểm \(I\left( {1;2;3} \right)\)có phương trình là
Cho hình nón tròn xoay có bán kính đáy bằng \(3\) và diện tích xung quanh bằng \(6\sqrt 3 \pi \) . Góc ở đỉnh của hình nón đã cho bằng
Cho các số phức \(z = - 1 + 2i,{\rm{w}} = 2 - i.\) Điểm nào trong hình bên biểu diễn số phức \(z + {\rm{w}}?\)
Trong không gian \(Oxyz,\) cho \(E\left( { - 1;0;2} \right)\) và \(F\left( {2;1; - 5} \right)\). Phương trình đường thẳng \({\rm{EF}}\) là
Cho số phức z thỏa mãn \({\left( {1 - \sqrt 3 i} \right)^2}z = 3 - 4i.\) Môđun của z bằng:
Trong không gian Oxyz, cho hai mặt phẳng \(\left( P \right):x - 3y + 2z - 1 = 0,\,\,\left( Q \right):x - z + 2 = 0.\) Mặt phẳng \(\left( \alpha \right)\) vuông góc với cả (P) và (Q) đồng thời cắt trục Ox tại điểm có hoành độ bằng 3. Phương trình của \(\left( \alpha \right)\) là:
Cho hình lập phương \(ABCD.A'B'C'D'\) có \(I,J\) tương ứng là trung điểm của \(BC\) và \(BB'\) . Góc giữa hai đường thẳng \(AC\) và \(IJ\) bằng
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật với \(Ab = 3a,\,BC = a\) , cạnh bên \(SD = 2a\) và \(SD\) vuông góc với mặt phẳng đáy. Thể tích khối chóp \(S.ABCD\) bằng
Cho khối lăng trụ tứ giác đều \(ABCD.A'B'C'D'\) có khoảng cách giữa AB và A’D bằng 2, đường chéo của mặt bên bằng 5. Biết \(A'A > AD\). Thể tích lăng trụ là
Đạo hàm của hàm số \(f\left( x \right) = \frac{{{3^x} - 1}}{{{3^x} + 1}}.\) là:
Trong không gian \(Oxyz\) , mặt phẳng \(\left( P \right)\) đi qua điểm \(M\left( {3; - 1;4} \right)\) đồng thời vuông góc với giá của vectơ \(\overrightarrow a \left( {1; - 1;2} \right)\) có phương trình là
Trong không gian \(Oxyz\), cho \(\overrightarrow a \left( { - 3;4;\,0} \right)\) và \(\overrightarrow b \,\left( {5;\,0;\,12} \right)\). Côsin của góc giữa \(\overrightarrow {a\,} \) và \(\overrightarrow b \) bằng