Lời giải của giáo viên
Giả sử (P) là mặt phẳng trung trực của đoạn thẳng AB. Điểm I là trung điểm của đoạn thẳng AB.
Ta có: \(I = \left( {\frac{3}{2};\,\frac{3}{2};\,\frac{{13}}{2}} \right) \in \left( P \right)\) và \(\overrightarrow {AB} = \left( { - 5;\, - 3;\,3} \right)\) là một véc tơ pháp tuyến của (P).
Vậy phương trình mặt phẳng (P) là \( - 5x - 3y + 3z - \frac{{15}}{2} = 0\).
CÂU HỎI CÙNG CHỦ ĐỀ
Diện tích xung quanh hình trụ có độ dài đường sinh l=5 và bán kính đáy r= 2 là
Khi ánh sáng đi qua một môi trường (chẳng hạn như không khí, nước, sương mù, …) cường độ sẽ giảm dần theo quãng đường truyền x, theo công thức \(I(x) = {I_ \circ }{e^{ - \mu x}},\) trong đó \({I_ \circ }\) là cường độ của ánh sáng khi bắt đầu truyền vào môi trường và \(\mu \) là hệ số hấp thu của môi trường đó. Biết rằng nước biển có hệ số hấp thu \(\mu = 1,4\) và người ta tính được rằng khi đi từ độ sâu 2m xuống đến độ sâu 20m thì cường độ ánh sáng giảm \(l{.10^{10}}\) lần. Số nguyên nào sau đây gần với l nhất?
Có bao nhiêu giá trị nguyên của tham số m\(\left( {\left| m \right| < 10} \right)\) để phương trình \({2^{x - 1}} = {\log _4}\left( {x + 2m} \right) + m\) có nghiệm?
Cho \(I = \int {\frac{{{{\ln }^5}x}}{{2x}}dx} \). Giả sử đặt t = ln x. Khi đó ta có:
Gọi M, N lần lượt là điểm biểu diễn của hai nghiệm phức của phương trình \({z^2} - 4z + 9 = 0\). Tính độ dài MN.
Gọi z1; z2 là các nghiệm phức của phương trình \({z^2} - 3z + 7 = 0\). Giá trị của biểu thức \(P = \left| {{z_1}} \right| + \left| {{z_2}} \right|\) bằng
Thể tích hình hộp chữ nhật có độ dài ba kích thước lần lượt là 2,3,5 bằng
Cho hình phẳng (H) giới hạn bởi đồ thị hàm số \(y = - {x^2} + 3x - 2\), trục hoành và hai đường thẳng x = 1, x = 2. Quay (H) xung quanh trục hoành được khối tròn xoay có thể tích là
Cho mặt cầu có bán kính đáy r = 4 . Diện tích mặt cầu bằng
Cho hàm số y = f(x) có bảng biến thiên như sau:
Hàm số đã cho đạt cực tiểu tại
Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 4x + 2y - 2z - 3 = 0\). Bán kính của mặt cầu là
Cho hình trụ có hai đường tròn đáy (O;R) và (O';R), chiều cao \(h = \sqrt 3 R\). Đoạn thẳng AB có hai đầu mút nằm trên hai đường tròn đáy hình trụ sao cho góc hợp bởi AB và trục của hình trụ là \(\alpha = {30^0}\). Thể tích tứ diện ABOO' là
Cho hàm bậc bốn y = f(x) có đồ thị trong hình bên. Số nghiệm của phương trình f(x) = 1 là
Tập nghiệm của bất phương trình \({4^x} - {5.2^{x + 1}} + 16 \le 0\) là
Cho hàm số f(x) có f(0) = 0 và \(f'\left( x \right) = \cos \left( {x + \frac{\pi }{4}} \right){\cos ^2}\left( {2x + \frac{\pi }{2}} \right),\forall x \in R\). Khi đó \(\int\limits_{ - \frac{\pi }{4}}^{\frac{\pi }{4}} {f\left( x \right){\rm{d}}x} \) bằng