Trong không gian \(Oxyz\), cho điểm \(M\) nằm trên trục \(Ox\) sao cho \(M\) không trùng với gốc tọa độ, khi đó tọa độ điểm \(M\)có dạng
A. \(M\left( {a;0;0} \right),a \ne 0\).
B. \(M\left( {0;b;0} \right),b \ne 0\).
C. \(M\left( {0;0;c} \right),c \ne 0\).
D. \(M\left( {a;1;1} \right),a \ne 0\).
Lời giải của giáo viên
\(M \in Ox \ne 0 \Rightarrow M\left( {a;0;0} \right),a \ne 0\)
Chọn A.
CÂU HỎI CÙNG CHỦ ĐỀ
Môdun của số phức z khi biết \(\overline z = 3 - 4i\) là:
Cho các số thực a < b < 0. Mệnh đề nào sau đây sai ?
Tìm miền xác định của hàm số \(y = \log \left( {{{1 - 5x} \over {2 - x}}} \right)\).
Hình chóp S.ABC có đáy là tam giác vuông tại A, cạnh AB = a, BC = 2a, chiều cao \(SA = a\sqrt 6 \). Thể tích của khối chóp là:
Ba đoạn thẳng SA, SB, SC đôi một vuông góc với nhau tạo thành một tứ diện SABC với: SA=a, SB=b, SC=c. Bán kính mặt cầu ngoại tiếp tứ diện đó là:
Điểm M(2 ; - 2) là điểm cực tiểu của đồ thị hàm số nào ?
Với các số thực a, b > 0 bất kì. Rút gọn biểu thức sau \(P = 2{\log _2}a - {\log _{{1 \over 2}}}{b^2}\):
Gọi S là hình phẳng giới hạn bởi đồ thị hàm số \(y = \dfrac{{x - 1}}{{x + 1}}\) và các trục tọa độ. Khi đó giá trị của S bằng :
Tập hợp các điểm biểu diễn số phức z thỏa mãn \(|z - 2i| = 4\) là:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành và có thể tích bằng 1. Trên cạnh SC lấy điểm E sao cho SE = 2EC. Tính thể tích V của khối tứ diện SEBD.
Cho hình chóp tứ giác đều S.ABCD có canhj đáy bẳng a và mặt bên tạo với đáy một góc 45o. Thể tích V khối chóp S.ABCD là:
Hàm số \(y = {\left( {4 - {x^2}} \right)^2} + 1\) có giá trị lớn nhất trên đoạn [-1 ; 1] là :
Cho số phức \(z = \dfrac{{1 + i}}{{2 - i}}\). Mô đun của z là: