Lời giải của giáo viên
Phương pháp:
Độ dài đoạn thẳng AB: \(AB = \sqrt {{{\left( {{x_B} - {x_A}} \right)}^2} + {{\left( {{y_B} - {y_A}} \right)}^2} + {{\left( {{z_B} - {z_A}} \right)}^2}} \)
Cách giải:
A(1;- 1;2) và \(B\left( {2;1;1} \right) \Rightarrow AB = \sqrt {{1^2} + {2^2} + {1^2}} = \sqrt 6 \)
CÂU HỎI CÙNG CHỦ ĐỀ
Tính thể tích của khối hộp chữ nhật ABCD.A'B'C'D' có \(AB = 3,AC = 5,AA' = 5\)
Điểm A trong hình vẽ bên là điểm biểu diễn của số phức z. Khi đó mệnh đề nào sau đây là đúng?
Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):2x - y + z - 1 = 0\) đi qua điểm nào dưới đây?
Cho hàm số \(y=f(x)\) liên tục trên R và có đồ thị như hình vẽ bên.
Có bao nhiêu giá trị nguyên của tham số m để phương trình \(f\left( {{x^2} - 2x} \right) = m\) có đúng 4 nghiệm thực phân biệt thuộc đoạn \(\left[ { - \frac{3}{2};\frac{7}{2}} \right]\)?
Cho hàm số \(y=f(x)\) có bảng biến thiên như sau:
Số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là:
Cho hàm số \(y=f(x)\) liên tục trên R và có đồ thị như hình bên. Số nghiệm dương phân biệt của phương trình \(2f\left( x \right) + 7 = 0\) là
Trong không gian Oxyz, cho mặt phẳng \(\left( \alpha \right):x + 2y + 3z - 6 = 0\) và đường thẳng
\(\Delta :\frac{{x + 1}}{{ - 1}} = \frac{{y + 1}}{{ - 1}} = \frac{{z - 3}}{1}\). Mệnh đề nào sau đây đúng?
Trong không gian Oxyz, cho hai điểm \(A\left( { - 2;1;0} \right),B\left( {2; - 1;2} \right)\). Phương trình của mặt cầu có đường kính AB là:
Cho hình chóp S.ABC có đáy là tam giác vuông tại B. Biết \(\Delta ABC\) đều và thuộc mặt phẳng vuông góc với mặt phẳng (ABC). Tính theo a thể tích khối chóp S.ABC biết \(AB = a,AC = a\sqrt 3 \)
Người ta xây một bể nước hình trụ (tham khảo hình vẽ bên) có bán kính R = 1m (tính từ tâm bể đến mép ngoài), chiều dày của thành bể là b = 0,05m, chiều cao của bể là h = 1,5 m. Tính dung tích của bể nước (làm tròn đến hai chữ số thập phân).
Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):2x + 2y - z + 4 = 0\) và các điểm \(A\left( {2;1;2} \right),B\left( {3; - 2;2} \right)\). Điểm M thuộc mặt phẳng (P) sao cho các đường thẳng MA, MB luôn tạo với mặt phẳng (P) một góc bằng nhau. Biết rằng điểm M luôn thuộc đường tròn (C) cố định. Tìm tọa độ tâm của đường tròn (C).
Tập nghiệm S của bất phương trình \({\left( {\frac{1}{2}} \right)^{{x^2} - 4x}} < 8\) là
Cho hàm số \(y=f(x)\) có đồ thị như hình bên. Giá trị cực tiểu của hàm số đã cho bằng
Họ nguyên hàm của hàm số \(f\left( x \right) = {2^x} + x\) là
Tính diện tích xung quanh của hình nón có chiều cao h = 8cm, bán kính đường tròn đáy r = 6cm.