Trong không gian \(Oxyz\), cho hai điểm \(A\left( 1;2;3 \right)\) và \(B\left( 3;2;1 \right)\). Phương trình mặt cầu đường kính \(AB\) là
A. \({{\left( x-2 \right)}^{2}}+{{\left( y-2 \right)}^{2}}+{{\left( z-2 \right)}^{2}}=2\).
B. \({{\left( x-2 \right)}^{2}}+{{\left( y-2 \right)}^{2}}+{{\left( z-2 \right)}^{2}}=4\).
C. \({{x}^{2}}+{{y}^{2}}+{{z}^{2}}=2\).
D. \({{\left( x-1 \right)}^{2}}+{{y}^{2}}+{{\left( z-1 \right)}^{2}}=4\) .
Lời giải của giáo viên
Gọi \(I\) là trung điểm của \(AB\) suy ra \(I\) là tâm mặt cầu đường kính \(AB\) .
\(I\left( 2;2;2 \right)\) , bán kính mặt cầu \(R=\frac{AB}{2}=\sqrt{2}\Rightarrow \) phương trình mặt cầu là:\({{\left( x-2 \right)}^{2}}+{{\left( y-2 \right)}^{2}}+{{\left( z-2 \right)}^{2}}=2\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho A là tập hợp gồm 20 điểm phân biệt. Số đoạn thẳng có hai điểm đầu mút phân biệt thuộc tập A là:
Cho số phức \(z\) thỏa mãn \(\left( 1+2i \right)z=\left( 1+2i \right)-\left( -2+i \right)\). Mô đun của \(z\) bằng
Khối chóp có đáy là hình vuông cạnh \(a\) và chiều cao bằng \(4a\). Thể tích khối chóp đã cho bằng
Có bao nhiêu số tự nhiên \(x\) không vượt quá \(2018\) thỏa mãn \({{\log }_{2}}\left( \frac{x}{4} \right)\log _{2}^{2}x\ge 0\)?
Điểm M là biểu diễn của số phức z trong hình vẽ bên dưới. Chọn khẳng định đúng
Trong không gian \(Oxyz\), cho hai điểm \(A\left( 1;\,1;\,-1\, \right)\),\(B\left( 2;\,3;\,2 \right)\). Vectơ \(\overrightarrow{AB}\) có tọa độ là
Phương trình mặt phẳng \(\left( P \right)\) đi qua điểm \(M\left( -1;2;0 \right)\) và có vectơ pháp tuyến \(\overrightarrow{n}=\left( 4;0;-5 \right)\) là
Đồ thị hàm số \(y=\frac{x+1}{2-x}\) có tiệm cận ngang là đường thẳng:
Gọi \(M,m\) lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(f\left( x \right)={{x}^{3}}-3{{x}^{2}}-9x+35\) trên đoạn \(\left[ -4;4 \right]\) . Tính \(M+2m\).
Tính tổng \(S\) của các phần thực của tất cả các số phức \(z\) thỏa mãn điều kiện \(\bar{z}=\sqrt{3}{{z}^{2}}.\)
Tìm tập nghiệm \(S\) của phương trình \({{\log }_{2}}\left( {{x}^{2}}-2 \right)+2=0\).
Gieo đồng tiền hai lần. Xác suất để sau hai lần gieo thì mặt sấp xuất hiện ít nhất một lần
Trong không gian với hệ trục tọa độ \(Oxyz\), cho đường thẳng \(d:\left\{ \begin{array}{l} x = 1\\ y = 2 + 3t\\ z = 5 - t \end{array} \right.\) \(\left( t\in \mathbb{R} \right)\). Vectơ chỉ phương của \(d\) là