Trong không gian Oxyz, cho hai điểm \(M\left( 1;0;1 \right)\) và \(N\left( 3;2;-1 \right)\). Gọi H là hình chiếu vuông góc của N lên trục Oz. Đường thẳng MH có phương trình tham số là
A.
\(\left\{ \begin{array}{l}
x = 1 + t\\
y = 0\\
z = 1 - 2t
\end{array} \right.\)
B.
\(\left\{ \begin{array}{l}
x = 1 + t\\
y = 0\\
z = 1 + 2t
\end{array} \right.\)
C.
\(\left\{ \begin{array}{l}
x = t\\
y = 1 - t\\
z = - 1 + 2t
\end{array} \right.\)
D.
\(\left\{ \begin{array}{l}
x = 1 + 2t\\
y = t\\
z = 1 + 2t
\end{array} \right.\)
Lời giải của giáo viên
Vì H là hình chiếu vuông góc của N lên trục Oz nên H(0;0; - 1).
Một vectơ chỉ phương của đường thẳng MH là \(\overrightarrow {HM} = (1;0;2)\).
Vậy \((MH):\left\{ \begin{array}{l} x = 1 + t\\ y = 0\\ z = 1 + 2t \end{array} \right.\).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f\left( x \right)\) có bảng biến thiên như sau:
Số nghiệm thuộc đoạn \(\left[ 0;\frac{5\pi }{2} \right]\) của phương trình \(f\left( \left| \sin x \right| \right)=2\) là
Xét \(\int\limits_{0}^{1}{(x-1).{{e}^{{{x}^{2}}-2x+3}}dx}\), nếu đặt \(u={{x}^{2}}-2x+3\) thì \(\int\limits_{0}^{1}{(x-1).{{e}^{{{x}^{2}}-2x+3}}dx}\) bằng:
Giả sử S = (a;b) là tập nghiệm của bất phương trình \({4^x} - {3.2^{x + 1}} + 8 < 0\). Giá trị biểu thức P = a + 2b.
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
Trong không gian Oxyz, cho điểm K(1;-2;1). Mặt phẳng (P) đi qua K và vuông góc với trục Oy có phương trình là
Cho hai số phức \({z_1} = 2 - 4i\) và \({z_2} = 1 - 3i.\) Phần ảo của số phức \({z_1} + i\overline {{z_2}} \) bằng
Diện tích S của hình phẳng giới hạn bởi đồ thị các hàm số \(y=-{{x}^{2}}-x+1,\,\,y=2, x=-1, x=1\) được tính bởi công thức nào dưới đây?
Cho hai số thực a>1,b>1. Biết phương trình \({{a}^{x}}{{b}^{{{x}^{2}}-1}}=1\) có hai nghiệm phân biệt \({{x}_{1}},{{x}_{2}}\). Tìm giá trị nhỏ nhất của biểu thức \(S={{\left( \frac{{{x}_{1}}{{x}_{2}}}{{{x}_{1}}+{{x}_{2}}} \right)}^{2}}-4\left( {{x}_{1}}+{{x}_{2}} \right)\).
Tìm tập xác định D của hàm số \(y = {\log _3}\left( {{x^2} - 4x + 3} \right)\)
Cho tam giác ABC vuông tại A, trong đó AB=a, BC=2a. Quay tam giác ABC quanh trục AB ta được một hình nón có thể tích là
Thể tích của khối lăng trụ có diện tích đáy bằng 2 và độ dài chiều cao bằng 3.
Trong không gian Oxyz, hình chiếu vuông góc của điểm \(M\left( -4;\,3;\,1 \right)\) trên mặt phẳng \(\left( Oyz \right)\) có tọa độ là
Khi cắt khối trụ \(\left( T \right)\) bởi một mặt phẳng song song với trục và cách trục của trụ \(\left( T \right)\) một khoảng bằng \(a\sqrt{3}\) ta được thiết diện là hình vuông có diện tích bằng \(4{{a}^{2}}\). Tính thể tích V của khối trụ \(\left( T \right)\).
Kí hiệu \({z_1},{z_2}\) là hai nghiệm phức của phương trình \({z^2} + z\sqrt 2 + 5 = 0\). Tính \(M = \frac{1}{{{z_1}}} + \frac{1}{{{z_2}}}\).
Có bao nhiêu cách cắm 3 bông hoa giống nhau vào 5 lọ khác nhau (mỗi lọ cắm không quá một bông)?