Câu hỏi Đáp án 2 năm trước 37

Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2\left( x+2y+3z \right)=0\). Gọi A, B, C lần lượt là giao điểm (khác gốc tọa độ O) của mặt cầu (S) và các trục tọa độ Ox, Oy, Oz. Phương trình mặt phẳng \(\left( ABC \right)\) là

A. \(6x-3y-2z+12=0\).

B. \(6x-3y+2z-12=0\).

C. \(6x+3y+2z-12=0\).

Đáp án chính xác ✅

D. \(6x-3y-2z-12=0\).

Lời giải của giáo viên

verified HocOn247.com

Dễ thấy \(A\left( 2;0;0 \right),\,B\left( 0;4;0 \right),\,C\left( 0;0;6 \right)\)

Do đó \(\left( ABC \right):\frac{x}{2}+\frac{y}{4}+\frac{z}{6}=1\Leftrightarrow 6x+3y+2z-12=0\).

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Có bao nhiêu số phức z thỏa mãn \(\left| z-3i \right|=\left| 1-i.\overline{z} \right|\) và \(z-\frac{9}{z}\) là số thuần ảo?

Xem lời giải » 2 năm trước 146
Câu 2: Trắc nghiệm

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh SA=a và vuông góc với mặt phẳng đáy. Góc giữa hai mặt phẳng (SBC) và \((ABC\text{D})\) bằng

Xem lời giải » 2 năm trước 140
Câu 3: Trắc nghiệm

Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ?

Xem lời giải » 2 năm trước 49
Câu 4: Trắc nghiệm

Phương trình \({{4}^{2x-4}}=16\) có nghiệm là

Xem lời giải » 2 năm trước 48
Câu 5: Trắc nghiệm

Cho hàm số \(y=\frac{2x-1}{x-1}\) có đồ thị \(\left( C \right)\). Điểm \(M\left( a,b \right)\left( a>0 \right)\) thuộc \(\left( C \right)\) sao cho khoảng cách từ M tới tiệm cận đứng của \(\left( C \right)\) bằng khoảng cách M tới tiệm cận ngang của \(\left( C \right)\). Mệnh đề nào dưới đây đúng?

Xem lời giải » 2 năm trước 47
Câu 6: Trắc nghiệm

Cho hàm số \(y=f(x)\) có đạo hàm tại \(x=1\) và \({f}'(1)\ne 0\). Gọi \({{d}_{1}},\text{ }{{\text{d}}_{2}}\) lần lượt là hai tiếp tuyến của đồ thị hàm số \(y=f(x)\) và \(y=g(x)=x.f(2\text{x}-1)\) tại điểm có hoành độ \(x=1\). Biết rằng hai đường thẳng \({{d}_{1}},\text{ }{{\text{d}}_{2}}\) vuông góc với nhau. Khẳng định nào sau đây đúng?

Xem lời giải » 2 năm trước 47
Câu 7: Trắc nghiệm

Cho các số thực a,b>1 thỏa mãn \({{a}^{{{\log }_{b}}a}}+{{16}^{{{\log }_{a}}\left( \frac{{{b}^{8}}}{{{a}^{3}}} \right)}}=12{{b}^{2}}.\) Giá trị của \({{a}^{3}}+{{b}^{3}}\) bằng

Xem lời giải » 2 năm trước 46
Câu 8: Trắc nghiệm

Họ tất cả các nguyên hàm của hàm số \(f(x)=\sin 5\text{x}\) là

Xem lời giải » 2 năm trước 44
Câu 9: Trắc nghiệm

Trong mặt phẳng Oxy, cho hai điểm A, B như hình vẽ dưới đây. Trung điểm của đoạn thẳng AB biểu diễn số phức?

Xem lời giải » 2 năm trước 43
Câu 10: Trắc nghiệm

Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\left\{ \begin{align} & 1\text{x}=2+2t \\ & y=-1-3t \\ & z=1 \\ \end{align} \right.(t\in \mathbb{R})\). Xét đường thẳng \(\Delta :\frac{x-1}{1}=\frac{y-3}{m}=\frac{z+2}{-2}\), với m là tham số thực khác 0. Tìm tất cả các giá trị thực của m để đường thẳng Δ vuông góc với đường thẳng d.

Xem lời giải » 2 năm trước 42
Câu 11: Trắc nghiệm

Cho hàm số \(y = f\left( x \right) = \left\{ {\begin{array}{*{20}{l}} {{x^2} - 2mx + 3\,\,\,\left( {x \le 1} \right)}\\ {nx + 10\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {x > 1} \right)} \end{array}} \right.\), trong đó m,n là hai tham số thực. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số \(y=f\left( x \right)\) có đúng hai điểm cực trị?

Xem lời giải » 2 năm trước 42
Câu 12: Trắc nghiệm

Cho hàm số \(y=f(x)\) có bảng biến thiên như sau

Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là

Xem lời giải » 2 năm trước 41
Câu 13: Trắc nghiệm

Trong không gian Oxyz, cho đường thẳng \(\Delta \) đi qua điểm \(M\left( 2;0;-1 \right)\) và có vectơ chỉ phương \(\overrightarrow{a}=\left( 4;-6;2 \right)\). Phương trình tham số của \(\Delta \) là

Xem lời giải » 2 năm trước 41
Câu 14: Trắc nghiệm

Cho hàm số bậc ba \(y=f(x)\) và có đồ thị là đường cong như trong hình vẽ. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(g(x)=\left| f(2\sin x)-1 \right|\). Tổng M+m bằng

Xem lời giải » 2 năm trước 41
Câu 15: Trắc nghiệm

Gọi F(x) là nguyên hàm trên \(\mathbb{R}\) của hàm số \(f\left( x \right)={{x}^{2}}{{e}^{ax}}\left( a\ne 0 \right),\) sao cho \(F\left( \frac{1}{a} \right)=F\left( 0 \right)+1.\) Chọn mệnh đề đúng trong các mệnh đề sau:

Xem lời giải » 2 năm trước 41

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »