Trong không gian Oxyz, phương trình đường thẳng đi qua hai điểm A(-3;1;2), B(1;-1;0) là
A. \(\frac{{x - 1}}{{ - 2}} = \frac{{y + 1}}{{ - 1}} = \frac{z}{1}\)
B. \(\frac{{x + 3}}{2} = \frac{{y - 1}}{1} = \frac{{z - 2}}{{ - 1}}\)
C. \(\frac{{x + 3}}{2} = \frac{{y - 1}}{{ - 1}} = \frac{{z - 2}}{1}\)
D. \(\frac{{x - 1}}{2} = \frac{{y + 1}}{{ - 1}} = \frac{z}{{ - 1}}\)
Lời giải của giáo viên
Ta có: \(\overrightarrow {AB} = \left( {4; - 2; - 2} \right)\) nên phương trình đường thẳng nhận vecto \(\overrightarrow n = \frac{1}{2}\overrightarrow {AB} = \left( {2; - 1; - 1} \right)\) làm vecto chỉ phương.
Vì \(B \in AB\) nên ta suy ra phương trình đường thẳng AB là: \(\frac{{x - 1}}{2} = \frac{{y + 1}}{{ - 1}} = \frac{z}{{ - 1}}\).
CÂU HỎI CÙNG CHỦ ĐỀ
Bất phương trình \({3^{2x + 1}} - {7.3^x} + 2 > 0\) có nghiệm là
Có 8 học sinh nam, 5 học sinh nữ và 1 thầy giáo được sắp xếp ngẫu nhiên đứng thành một vòng tròn. Tính xác suất để thầy giáo đứng giữa 2 học sinh nam.
Hàm số \(y = {\log _2}\left( {2x - 3} \right)\) có tập xác định là
Tìm tập nghiệm S của bất phương trình \({\log _{\frac{1}{2}}}\left( {x + 1} \right) < {\log _{\frac{1}{2}}}\left( {2x - 1} \right)\).
Số giao điểm của đồ thị hàm số \(y = {x^4} - 5{x^2} + 4\) với trục hoành là:
Cho trước 5 chiếc ghế xếp thành một hàng ngang. Số cách xếp ba bạn A, B, C vào 5 chiếc ghế đó sao cho mỗi bạn ngồi một ghế là
Khối chóp S.ABCD có đáy là hình thoi và \(SA \bot (ABCD)\) có thể tích bằng
Cho \(I = \int\limits_1^2 {2x\sqrt {{x^2} - 1} } {\rm{d}}x\) và \(u = {x^2} - 1\). Mệnh đề nào dưới đây sai ?
Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x3, trục hoành và hai đường thẳng x = -1; x = 2 là
Trong không gian Oxyz cho điểm A(-2;1;3). Hình chiếu vuông góc của A lên trục Ox có tọa độ là:
Cho hàm số f(x) liên tục trên [-1;3] và có đồ thị như hình vẽ bên. Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f(x) trên [-1;3]. Tính M - m.
Với a, b, c là các số thực dương tùy ý khác 1 và \({\log _a}c = x,{\log _b}c = y\). Khi đó giá trị của \({\log _c}\left( {ab} \right)\) là
Trong không gian Oxyz, cho mặt phẳng (P): 2x - z + 1 = 0.Tọa độ một vectơ pháp tuyến của mặt phẳng (P) là
Trong không gian Oxyz, mặt cầu \(\left( S \right):{\left( {x - 5} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 2} \right)^2} = 3\) có bán kính bằng