Trong không gian với hệ tọa độ \({\rm{Ox}}yz\), cho mặt cầu \((S):{x^2} + {y^2} + {z^2} = 9\), điểm \(M(1;1;2)\) và mặt phẳng \((P):x + y + z - 4 = 0\). Gọi \(\Delta \) là đường thẳng đi qua M, thuộc \((P)\) và cắt \((S)\) tại hai điểm A, B sao cho AB nhỏ nhất. Biết rằng \(\Delta \) có một vecto chỉ phương là \(\overrightarrow u (1;a;b)\), tính \(T = a - b.\)
A. \(T = - 2\)
B. \(T = 1\)
C. \(T = - 1\)
D. \(T = 0\)
Lời giải của giáo viên
Ta có: \(M \in (P)\)
\(O{M^2} = 6 < {R^2} = 9 \Rightarrow \) M nằm trong mặt cầu \( \Rightarrow \) (P) cắt mặt cầu thành 1 hình tròn (C)
Gọi H là tâm hình tròn (C)
Để AB nhỏ nhất thì \(AB \bot HM\)
Vì \(\left\{ \begin{array}{l}AB \bot HM\\AB \subset (P)\end{array} \right. \Rightarrow \) \(\overrightarrow {{u_{AB}}} = \left[ {\overrightarrow {HM} ,\overrightarrow {{n_{(P)}}} } \right]\)
O là tâm mặt cầu và O(0; 0; 0)
Phương trình OH: \(\left\{ \begin{array}{l}x = t\\y = t\\z = t\end{array} \right.\) \( \Rightarrow H(t;t;t) \in (P) \Rightarrow t = \frac{4}{3}\) \( \Rightarrow H\left( {\frac{4}{3};\frac{4}{3};\frac{4}{3}} \right) \Rightarrow \overrightarrow {HM} = \left( {\frac{{ - 1}}{3};\frac{{ - 1}}{3};\frac{2}{3}} \right)\)
\( \Rightarrow \overrightarrow {{u_{AB}}} = ( - 3;3;0)\) là một vecto chỉ phương của AB
Chọn \(\frac{{ - 1}}{3}\overrightarrow {{u_{AB}}} = (1; - 1;0)\) là vecto chỉ phương của AB
Thì \(a = - 1;b = 0 \Rightarrow a - b = - 1.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Tìm giá trị \(m\) nhỏ nhất của hàm số \(y = {x^3} - 7{x^2} + 11x - 2\) trên đoạn [0; 2] .
Trong không gian với hệ tọa độ \({\rm{Ox}}yz,\) cho hai đường thẳng \({d_1}:\left\{ \begin{array}{l}x = 1 + 3t\\y = - 2 + t\\z = 2\end{array} \right.\) và \({d_2}:\frac{{x - 1}}{2} = \frac{{y + 2}}{{ - 1}} = \frac{z}{2}\) mặt phẳng \((P):2x + 2y - 3z = 0\). Phương trình nào dưới đây là phương trình mặt phẳng đi qua giao điểm của \({d_1}\) và \((P)\) , đồng thời vuông góc với \({d_2}\)?
Đường cong ở hình bên là đồ thị của hàm số \(y = \frac{{ax + b}}{{cx + c}}\) với \(a,b,c,d\) là các số thực. Mệnh đề nào dưới đây đúng?
Cho \(F(x) = {x^2}\) là một nguyên hàm của hàm số \(f(x){e^{2x}}\). Tìm nguyên hàm của hàm số \(f'(x){e^{2x}}.\)
Cho hình chóp tứ giác đều S.ABCD có các cạnh đều bằng \(a\sqrt 2 \). Tính thể tích của khối
nón có đỉnh S và đường tròn đáy là đường tròn nội tiếp tứ giác ABCD.
Phương trình nào dưới đây nhận hai số phức \(1 + \sqrt 2 i\) và \(1 - \sqrt 2 i\) là nghiệm?
Có bao nhiêu số phức z thỏa mãn \(\left| {z - 3i} \right| = 5\) và \(\frac{z}{{z - 4}}\) là số thuần ảo?
Đường cong ở hình bên là đồ thị của một trong bốn hàm số dưới đây. Hàm số đó là hàm số nào?
Cho \(\int\limits_0^6 {f(x)dx = 12} \) . Tính \(I = \int\limits_0^2 {f(3x)dx} .\)
Tìm giá trị thực của tham số \(m\) để phương trình \(\log _3^2x - m{\log _3}x + 2m - 7 = 0\) có hai nghiệm thực \({x_1},{x_2}\) thỏa mãn \({x_1}{x_2} = 81.\)
Trong không gian với hệ tọa độ \({\rm{Ox}}yz\) cho mặt phẳng\((P):x - 2y + z - 5 = 0\). Điểm nào dưới đây thuộc \((P)\)?
Trong không gian với hệ tọa độ \(Oxyz\) cho điểm \(M(1; - 2;3)\) . Gọi \(I\) là hình chiếu vuông góc của \(M\) trên trục \({\rm{Ox}}\). Phương trình nào dưới đây là phương trình của mặt cầu tâm \(I\) bán kính \(IM\)?
Cho hàm số \(y = - {x^3} - m{x^2} + (4m + 9)x + 5\) với \(m\) là tham số. Có bao nhiêu giá trị nguyên của \(m\) để hàm số nghịch biến trên khoảng ( − ∞; + ∞)?
Cho hàm số \(f(x)\) thỏa mãn \(f'(x) = 3 - 5\sin x\) và \(f(0) = 10\). Mệnh đề nào dưới đây đúng?
Cho \({\log _a}x = 3,{\log _b}x = 4\) với \(a,b\) là các số thực lớn hơn 1. Tính \(P = {\log _{ab}}x.\)