Trong không gian với hệ tọa độ Oxyz cho ba điểm \(A\left( 2;0;0 \right), B\left( 0;4;0 \right), C\left( 0;0;6 \right)\). Điểm M thay đổi trên mặt phẳng \(\left( ABC \right)\) và N là điểm trên tia OM sao cho OM.ON=2020. Biết rằng khi M thay đổi, điểm N luôn thuộc một mặt cầu \(\left( S \right)\) cố định. Đường thẳng đi qua \(D\left( 0;202;10 \right)\) cắt \(\left( S \right)\) theo một dây cung EF,khi đó EF có độ dài ngắn nhất là.
A. \(4\sqrt {10226} \)
B. \(2\sqrt {10226} \)
C. \(3\sqrt {10226} \)
D. \(5\sqrt {10226} \)
Lời giải của giáo viên
Phương trình mặt phẳng \(\left( ABC \right):\frac{x}{4}+\frac{y}{5}+\frac{z}{101}=1\Leftrightarrow 505x+404y+20z-2020=0\)
Gọi \(N\left( x;y;z \right)\)
Theo giả thiết ta có N là điểm trên tia OM sao cho OM.ON=2020 suy ra \(\overrightarrow{OM}=\frac{2020}{O{{N}^{2}}}.\overrightarrow{ON}\)
Do đó \(M\left( \frac{2020x}{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}};\frac{2020y}{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}};\frac{2020z}{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}} \right)\)
Mặt khác \(M\in \left( ABC \right)$ nên \(505\frac{2020x}{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}+404\frac{2020y}{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}+20\frac{2020z}{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}-2020=0\)
\(\Leftrightarrow {{x}^{2}}+{{y}^{2}}+{{z}^{2}}-505x-404y-20z=0\).
Do đó điểm N luôn thuộc một mặt cầu cố định \(\left( S \right):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-505x-404y-20z=0\).
Dễ thấy D nằm trong mặt cầu, do vậy EF ngắn nhất khi và chỉ khi \(ID\bot EF\), trong đó \(I\left( \frac{505}{2};202;10 \right)\).
Khi đó \(F{{E}_{\min }}=2DF=2\sqrt{{{R}^{2}}-I{{D}^{2}}}=2\sqrt{{{\left( \frac{505}{2} \right)}^{2}}+{{202}^{2}}+{{10}^{2}}-{{\left( \frac{505}{2} \right)}^{2}}}=4\sqrt{10226}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số y = f(x) có bảng biến thiên như hình vẽ bên. Hàm số y = f(x) nghịch biến trên khoảng nào trong các khoảng sau đây?
Cho hàm số \(f\left( x \right)=\sin x\cos x\). Trong các khẳng định sau, khẳng định nào đúng?
Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có \(A\left( 2\,;2;\,0 \right), B\left( 1;0;2 \right), C\left( 0;4;4 \right)\). Viết phương trình mặt cầu có tâm là A và đi qua trọng tâm G của tam giác ABC.
Cho hàm số \(y = f\left( x \right) = \left\{ \begin{array}{l} {x^2} + 3{x^2};x \ge 1\\ 5 - x\,;x < 1 \end{array} \right.\). Tính \(I = 2\int\limits_0^{\frac{\pi }{2}} {f\left( {\sin x} \right)\cos x{\rm{d}}x + 3\int\limits_0^1 {f\left( {3 - 2x} \right){\rm{d}}x} } \).
Đường cong trong hình dưới là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?
Gọi T là tập hợp tất cả các số phức z thõa mãn \(\left| {{z}_{1}} \right|=2\) và \(\left| {{z}_{2}} \right|=3,\left| 2{{z}_{1}}-{{z}_{2}} \right|=\sqrt{17}\). Gọi M,m lần lượt là các giá trị lớn nhất, giá trị nhỏ nhất của \(T=\left| 3{{z}_{1}}+2{{z}_{2}}-10-12i \right|\). Khi đó M.n bằng
Tính diện tích xung quanh của một hình trụ có chiều cao 20m, chu vi đáy bằng 5m.
Cho hàm số \(y={{x}^{4}}-{{x}^{3}}+3.\) Khẳng định nào sau đây là đúng?
Cho hàm số \(f\left( x \right) = \frac{{2x + 1}}{x}\). Trong các khẳng định sau, khẳng định nào đúng?
Cho tứ diện OABC có \(OA,\,\,OB,\,\,OC\) đôi một vuông góc và \(OA=OB=2a,\,\,OC=a\sqrt{2}\). Khoảng cách từ O đến mặt phẳng \(\left( ABC \right)\) bằng
Cho hàm số y = f(x) có bảng biến thiên như hình vẽ dưới đây:
Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là:
Có bao nhiêu giá trị nguyên của tham số m thuộc khoảng \(\left( -2000;2000 \right)\) để \(4{{a}^{\sqrt{{{\log }_{a}}b}}}-{{b}^{\sqrt{{{\log }_{b}}a}}}>m\sqrt{{{\log }_{a}}b}+3\) với mọi \(a,b\in \left( 1;+\infty \right)\)
Hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R}\) có đồ thị \(y={f}'\left( x \right)\) như hình vẽ.
Xét hàm số \(g\left( x \right)=f\left( x \right)-\frac{1}{3}{{x}^{3}}-\frac{3}{4}{{x}^{2}}+\frac{3}{2}x+2021\). Trong các mệnh đề dưới đây:
(I) \(g\left( 0 \right)<g\left( 1 \right)\).
(II) \(\underset{x\in \left[ -3;1 \right]}{\mathop{\min }}\,g\left( x \right)=g\left( -1 \right)\).
(III) Hàm số \(g\left( x \right)\) nghịch biến trên \(\left( -3;-1 \right)\).
(IV) \(\underset{x\in \left[ -3;1 \right]}{\mathop{\max }}\,g\left( x \right)=\max \left\{ g\left( -3 \right);g\left( 1 \right) \right\}\).
Số mệnh đề đúng là
Rút gọn \(P = {a^{\sqrt 2 }}.{\left( {\frac{1}{a}} \right)^{\sqrt 2 - 1}},a > 0.\)
Chọn ngẫu nhiên một số từ tập các số tự nhiên có ba chữ số đôi một khác nhau. Xác suất để số được chọn có tổng các chữ số là lẻ bằng