Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\frac{x+1}{1}=\frac{y}{-3}=\frac{z-5}{-1}\) và mặt phẳng \(\left( P \right):3x-3y+2z+6=0\). Mệnh đề nào dưới đây đúng?
A. d cắt và không vuông góc với (P)
B. d vuông góc với (P)
C. d song song với (P)
D. d nằm trong (P)
Lời giải của giáo viên
Ta có đường thẳng d đi qua \(M\left( -1;0;5 \right)\) có vtcp \(\overrightarrow{u}=\left( 1;-3;-1 \right)\) và mặt phẳng \(\left( P \right)\) có vtpt \(\overrightarrow{n}=\left( 3;-3;2 \right)\)
\(M\notin \left( P \right)\Rightarrow \) loại đáp án D
\(\overrightarrow{n}, \overrightarrow{u}\) không cùng phương \(\Rightarrow \) loại đáp án B
\(\overrightarrow{n}.\overrightarrow{u}=10\Rightarrow \overrightarrow{n},\overrightarrow{u}\) không vuông góc \(\Rightarrow \) loại đáp án C
CÂU HỎI CÙNG CHỦ ĐỀ
Có bao nhiêu số nguyên dương y để tập nghiệm của bất phương trình \(\left( {{\log }_{2}}x-\sqrt{2} \right)\left( {{\log }_{2}}x-y \right)<0\) chứa tối đa 1000 số nguyên.
Một vật chuyển động với vận tốc \(v\left( t \right)\left( m/s \right)\) có gia tốc \(a\left( t \right)=3{{t}^{2}}+t\left( m/{{s}^{2}} \right)\). Vận tốc ban đầu của vật là \(2\left( m/s \right)\). Hỏi vận tốc của vật sau 2s
Rút gọn biểu thức \(P={{x}^{\frac{1}{5}}}.\sqrt[3]{x}\) với x>0.
Cho hàm số \(y=h\left( x \right)\) có bảng biến thiên như sau:
Hàm số đạt cực đại tại điểm
Họ nguyên hàm của hàm số \(f\left( x \right) = x + \sin 2x\) là.
Một khối trụ có thể tích bằng \(6\pi \). Nếu giữ nguyên chiều cao và tăng bán kính đáy của khối trụ đó gấp 3 lần thì thể tích của khối trụ mới bằng bao nhiêu?
Tính tích phân \(\int\limits_2^6 {\frac{1}{x}dx} \) bằng.
Cho \(I=\int\limits_{0}^{2}{f(x)d}x=3.\) Khi đó \(J=\int\limits_{0}^{2}{\left[ 4f\left( x \right)-3 \right]dx}\) bằng:
Cho hàm số \(y=f\left( x \right)\) có đạo hàm \(f'\left( x \right)=\left( {{e}^{x}}+1 \right)\left( {{e}^{x}}-12 \right)\left( x+1 \right){{\left( x-1 \right)}^{2}}\) trên \(\mathbb{R}\). Hỏi hàm số \(y=f\left( x \right)\) có bao nhiêu điểm cực trị?
Đồ thị \(\left( C \right)\) của hàm số \(y=\frac{\left( a+1 \right)x+2}{x-b+1}\) nhận gốc tọa độ O làm tâm đối xứng thì tổng a+b là
Cho hàm số \(y=f\left( x \right)\) nhận giá trị dương và có đạo hàm \({f}'\left( x \right)\) liên tục trên \(\mathbb{R}\) thỏa mãn \(\int\limits_{0}^{x}{\left[ {{f}^{2}}\left( t \right)+{{\left( {f}'\left( t \right) \right)}^{2}} \right]}dt={{\left( f\left( x \right) \right)}^{2}}-2018\). Tính \(f\left( 1 \right)\)