Câu hỏi Đáp án 2 năm trước 35

Trong không gian với hệ tọa độ \(Oxyz\), cho mặt phẳng \(\left( P \right):x+y+z-3=0\) và các điểm \(A\left( 3;2;4 \right),B\left( 5;3;7 \right)\). Mặt cầu \(\left( S \right)\) thay đổi đi qua \(A,B\) và cắt mặt phẳng \(\left( P \right)\) theo giao tuyến là đường tròn \(\left( C \right)\) có bán kính \(r=2\sqrt{2}\). Biết tâm của đường tròn \(\left( C \right)\) luôn nằm trên một đường tròn cố định \(\left( {{C}_{1}} \right)\). Bán kính của \(\left( {{C}_{1}} \right)\) là

A. \({{r}_{1}}=\sqrt{14}\).

B. \({{r}_{1}}=12\).

C. \({{r}_{1}}=2\sqrt{14}\).

D. \({{r}_{1}}=6\).

Đáp án chính xác ✅

Lời giải của giáo viên

verified HocOn247.com

Ta có \(\overrightarrow{AB}=\left( 2;1;3 \right)\) nên phương trình đường thẳng \(AB\) là \(\left\{ \begin{align} & x=3+2t \\ & y=2+t \\ & z=4+3t \\ \end{align} \right.\left( t\in \mathbb{R} \right) \)

Gọi \(M=AB\cap \left( P \right)\) thì tọa độ điểm \(M\) thỏa mãn hệ phương trình

\(\left\{ \begin{align} & {{x}_{M}}=3+2t \\ & {{y}_{M}}=2+t \\ & {{z}_{M}}=4+3t \\ & {{x}_{M}}+{{y}_{M}}+{{z}_{M}}-3=0 \\ \end{align} \right.\)

\(\Rightarrow \left( 3+2t \right)+\left( 2+t \right)+\left( 4+3t \right)-3=0\Leftrightarrow 6t+6=0\Leftrightarrow t=-1\to M\left( 1;1;1 \right)\)

Có \(MA=\sqrt{{{\left( 3-1 \right)}^{2}}+{{\left( 2-1 \right)}^{2}}+{{\left( 4-1 \right)}^{2}}}=\sqrt{14}\)

Và \(MB=\sqrt{{{\left( 5-1 \right)}^{2}}+{{\left( 3-1 \right)}^{2}}+{{\left( 7-1 \right)}^{2}}}=2\sqrt{14}\)

Gọi \({{I}_{1}}\) là tâm của đường tròn \(\left( C \right)\) và \(M{{I}_{1}}\) cắt đường tròn \(\left( C \right)\) tại 2 điểm \(C\) và \(D\).

Ta có \(MC.MD=MA.MB=\sqrt{14}.2\sqrt{14}=28\)

\(\Leftrightarrow \left( M{{I}_{1}}+r \right)\left( M{{I}_{1}}-r \right)=28\)

\(\Leftrightarrow MI_{1}^{2}-{{r}^{2}}=28\Leftrightarrow M{{I}_{1}}=\sqrt{28+{{\left( 2\sqrt{2} \right)}^{2}}}=6\).

Do \(M\left( 1;1;1 \right)\) nên điểm \(M\) cố định. Khi đó tâm \({{I}_{1}}\) của đường tròn \(\left( C \right)\) luôn nằm trên đường tròn cố định có tâm \(M\) bán kính \({{r}_{1}}=M{{I}_{1}}=6\).

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Có bao nhiêu số phức z thỏa mãn \(\left| z-3i \right|=\left| 1-i.\overline{z} \right|\) và \(z-\frac{9}{z}\) là số thuần ảo?

Xem lời giải » 2 năm trước 144
Câu 2: Trắc nghiệm

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh SA=a và vuông góc với mặt phẳng đáy. Góc giữa hai mặt phẳng (SBC) và \((ABC\text{D})\) bằng

Xem lời giải » 2 năm trước 137
Câu 3: Trắc nghiệm

Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ?

Xem lời giải » 2 năm trước 46
Câu 4: Trắc nghiệm

Cho hàm số \(y=f(x)\) có đạo hàm tại \(x=1\) và \({f}'(1)\ne 0\). Gọi \({{d}_{1}},\text{ }{{\text{d}}_{2}}\) lần lượt là hai tiếp tuyến của đồ thị hàm số \(y=f(x)\) và \(y=g(x)=x.f(2\text{x}-1)\) tại điểm có hoành độ \(x=1\). Biết rằng hai đường thẳng \({{d}_{1}},\text{ }{{\text{d}}_{2}}\) vuông góc với nhau. Khẳng định nào sau đây đúng?

Xem lời giải » 2 năm trước 45
Câu 5: Trắc nghiệm

Trong mặt phẳng Oxy, cho hai điểm A, B như hình vẽ dưới đây. Trung điểm của đoạn thẳng AB biểu diễn số phức?

Xem lời giải » 2 năm trước 41
Câu 6: Trắc nghiệm

Phương trình \({{4}^{2x-4}}=16\) có nghiệm là

Xem lời giải » 2 năm trước 40
Câu 7: Trắc nghiệm

Họ tất cả các nguyên hàm của hàm số \(f(x)=\sin 5\text{x}\) là

Xem lời giải » 2 năm trước 40
Câu 8: Trắc nghiệm

Cho hàm số bậc ba \(y=f(x)\) và có đồ thị là đường cong như trong hình vẽ. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(g(x)=\left| f(2\sin x)-1 \right|\). Tổng M+m bằng

Xem lời giải » 2 năm trước 39
Câu 9: Trắc nghiệm

Cho hàm số \(y=\frac{2x-1}{x-1}\) có đồ thị \(\left( C \right)\). Điểm \(M\left( a,b \right)\left( a>0 \right)\) thuộc \(\left( C \right)\) sao cho khoảng cách từ M tới tiệm cận đứng của \(\left( C \right)\) bằng khoảng cách M tới tiệm cận ngang của \(\left( C \right)\). Mệnh đề nào dưới đây đúng?

Xem lời giải » 2 năm trước 39
Câu 10: Trắc nghiệm

Trong không gian Oxyz, cho đường thẳng \(\Delta \) đi qua điểm \(M\left( 2;0;-1 \right)\) và có vectơ chỉ phương \(\overrightarrow{a}=\left( 4;-6;2 \right)\). Phương trình tham số của \(\Delta \) là

Xem lời giải » 2 năm trước 39
Câu 11: Trắc nghiệm

Cho hình lăng trụ tam giác đều \(ABC.{A}'{B}'{C}'\) có \(AB=a,\) góc giữa đường thẳng \({A}'C\) và mặt phẳng \(\left( ABC \right)\) bằng 45°. Thể tích của khối lăng trụ \(ABC.{A}'{B}'{C}'\) bằng

Xem lời giải » 2 năm trước 39
Câu 12: Trắc nghiệm

Cho hàm số \(y=f(x)\) có bảng biến thiên như sau

Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là

Xem lời giải » 2 năm trước 38
Câu 13: Trắc nghiệm

Cho các số thực a,b>1 thỏa mãn \({{a}^{{{\log }_{b}}a}}+{{16}^{{{\log }_{a}}\left( \frac{{{b}^{8}}}{{{a}^{3}}} \right)}}=12{{b}^{2}}.\) Giá trị của \({{a}^{3}}+{{b}^{3}}\) bằng

Xem lời giải » 2 năm trước 38
Câu 14: Trắc nghiệm

Gọi F(x) là nguyên hàm trên \(\mathbb{R}\) của hàm số \(f\left( x \right)={{x}^{2}}{{e}^{ax}}\left( a\ne 0 \right),\) sao cho \(F\left( \frac{1}{a} \right)=F\left( 0 \right)+1.\) Chọn mệnh đề đúng trong các mệnh đề sau:

Xem lời giải » 2 năm trước 38
Câu 15: Trắc nghiệm

Cho hình chóp S.ABCD có đáy ABCD là hình vuông, \(AC=\frac{a\sqrt{2}}{2}\). Cạnh bên SA vuông góc với mặt phẳng đáy và đường thẳng SB tạo với mặt phẳng \((ABC\text{D})\) một góc \(60{}^\circ \). Khoảng cách giữa hai đường thẳng AD và SC bằng

Xem lời giải » 2 năm trước 38

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »