Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x+ y + z -1 =0, đường thẳng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaacQ % dadaWcaaqaaiaadIhacqGHsislcaaIXaGaaGynaaqaaiaaigdaaaGa % eyypa0ZaaSaaaeaacaWG5bGaeyOeI0IaaGOmaiaaikdaaeaacaaIYa % aaaiabg2da9maalaaabaGaamOEaiabgkHiTiaaiodacaaI3aaabaGa % aGOmaaaaaaa!463B! d:\frac{{x - 15}}{1} = \frac{{y - 22}}{2} = \frac{{z - 37}}{2}\) và mặt cầu \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca % WGtbaacaGLOaGaayzkaaGaaiOoaiaadIhadaahaaWcbeqaaiaaikda % aaGccqGHRaWkcaWG5bWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaam % OEamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaiIdacaWG4bGaeyOe % I0IaaGOnaiaadMhacqGHRaWkcaaI0aGaamOEaiabgUcaRiaaisdacq % GH9aqpcaaIWaaaaa!4C00! \left( S \right):{x^2} + {y^2} + {z^2} - 8x - 6y + 4z + 4 = 0\). Một đường thẳng \((\Delta)\) thay đổi cắt mặt cầu S tại hai điểm A,B sao cho AB = 8 . Gọi A',B' là hai điểm lần lượt thuộc mặt phẳng (P) sao cho AA', BB' cùng song song với d. Giá trị lớn nhất của biểu thức AA' + BB' là
A.
\(% MathType!MTEF!2!1!+-
% feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
% aI4aGaey4kaSIaaG4maiaaicdadaGcaaqaaiaaiodaaSqabaaakeaa
% caaI5aaaaaaa!3AC4!
\frac{{8 + 30\sqrt 3 }}{9}\)
B.
\(% MathType!MTEF!2!1!+-
% feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
% aIYaGaaGinaiabgUcaRiaaigdacaaI4aWaaOaaaeaacaaIZaaaleqa
% aaGcbaGaaGynaaaaaaa!3B7E!
\frac{{24 + 18\sqrt 3 }}{5}\)
C.
\(% MathType!MTEF!2!1!+-
% feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
% aIXaGaaGOmaiabgUcaRiaaiMdadaGcaaqaaiaaiodaaSqabaaakeaa
% caaI1aaaaaaa!3AC1!
\frac{{12 + 9\sqrt 3 }}{5}\)
D.
\(% MathType!MTEF!2!1!+-
% feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9
% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x
% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca
% aIXaGaaGOnaiabgUcaRiaaiAdacaaIWaWaaOaaaeaacaaIZaaaleqa
% aaGcbaGaaGyoaaaaaaa!3B80!
\frac{{16 + 60\sqrt 3 }}{9}\)
Lời giải của giáo viên
Mặt cầu S có tâm I ( 4 ; 3; -2) và bán kính R =5.
Gọi H là trung điểm của AB thì \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiaadI % eacqGHLkIxcaWGbbGaamOqaaaa!3ACD! IH \bot AB\) và IH = 3 nên H thuộc mặt cầu (S') tâm I bán kính R' = 3 .
Gọi M là trung điểm của A'B' thì AA' + BB' = 2HM, M nằm trên mặt phẳng (P).
Mặt khác ta có \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaabm % aabaGaamysaiaacUdadaqadaqaaiaadcfaaiaawIcacaGLPaaaaiaa % wIcacaGLPaaacqGH9aqpdaWcaaqaaiaaisdaaeaadaGcaaqaaiaaio % daaSqabaaaaOGaeyipaWJaamOuaaaa!40E2! d\left( {I;\left( P \right)} \right) = \frac{4}{{\sqrt 3 }} < R\) nên (P) cắt mặt cầu (S) và \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaci4CaiaacM % gacaGGUbWaaeWaaeaacaWGKbGaai4oamaabmaabaGaamiuaaGaayjk % aiaawMcaaaGaayjkaiaawMcaaiabg2da9iGacohacaGGPbGaaiOBai % abeg7aHjabg2da9maalaaabaGaaGynaaqaaiaaiodadaGcaaqaaiaa % iodaaSqabaaaaaaa!4742! \sin \left( {d;\left( P \right)} \right) = \sin \alpha = \frac{5}{{3\sqrt 3 }}\) . Gọi K là hình chiếu của H lên (P) thì \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaadU % eacqGH9aqpcaWGibGaamytaiaac6caciGGZbGaaiyAaiaac6gacqaH % Xoqyaaa!3F5F! HK = HM.\sin \alpha \) .
Vậy để AA' + BB' lớn nhất thì HK lớn nhất
HK đi qua I nên \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaadU % eadaWgaaWcbaGaciyBaiaacggacaGG4baabeaakiabg2da9iqadkfa % gaqbaiabgUcaRiaadsgadaqadaqaaiaadMeacaGG7aWaaeWaaeaaca % WGqbaacaGLOaGaayzkaaaacaGLOaGaayzkaaGaeyypa0JaaG4maiab % gUcaRmaalaaabaGaaGinaaqaamaakaaabaGaaG4maaWcbeaaaaGccq % GH9aqpdaWcaaqaaiaaisdacqGHRaWkcaaIZaWaaOaaaeaacaaIZaaa % leqaaaGcbaWaaOaaaeaacaaIZaaaleqaaaaaaaa!4D44! H{K_{\max }} = R' + d\left( {I;\left( P \right)} \right) = 3 + \frac{4}{{\sqrt 3 }} = \frac{{4 + 3\sqrt 3 }}{{\sqrt 3 }}\)
Vậy AA' + BB' lớn nhất bằng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmamaabm % aabaWaaSaaaeaacaaI0aGaey4kaSIaaG4mamaakaaabaGaaG4maaWc % beaaaOqaamaakaaabaGaaG4maaWcbeaaaaaakiaawIcacaGLPaaaca % GGUaWaaSaaaeaacaaIZaWaaOaaaeaacaaIZaaaleqaaaGcbaGaaGyn % aaaacqGH9aqpdaWcaaqaaiaaikdacaaI0aGaey4kaSIaaGymaiaaiI % dadaGcaaqaaiaaiodaaSqabaaakeaacaaI1aaaaaaa!461A! 2\left( {\frac{{4 + 3\sqrt 3 }}{{\sqrt 3 }}} \right).\frac{{3\sqrt 3 }}{5} = \frac{{24 + 18\sqrt 3 }}{5}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho mặt phẳng P đi qua các điểm A ( -2; 0 ; 0),B( 0; 3; 0) ,C( 0; 0 ; -3) . Mặt phẳng (P) vuông góc với mặt phẳng nào trong các mặt phẳng sau?
Cho lăng trụ tam giác đều ABC.A'B'C' có cạnh đáy bằng a và \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiqadk % eagaqbaiabgwQiEjaadkeaceWGdbGbauaaaaa!3AD8! AB' \bot BC'\) . Tính thể tích V của khối lăng trụ đã cho.
Biết \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaaca % WG4bGaciiBaiaac6gadaqadaqaaiaadIhadaahaaWcbeqaaiaaikda % aaGccqGHRaWkcaaI5aaacaGLOaGaayzkaaGaaeizaiaadIhaaSqaai % aaicdaaeaacaaI0aaaniabgUIiYdGccqGH9aqpcaWGHbGaciiBaiaa % c6gacaaI1aGaey4kaSIaamOyaiGacYgacaGGUbGaaG4maiabgUcaRi % aadogaaaa!4E85! \int\limits_0^4 {x\ln \left( {{x^2} + 9} \right){\rm{d}}x} = a\ln 5 + b\ln 3 + c\), trong đó a,b ,c là các số nguyên. Giá trị của biểu thức T = a + b + c là
Trong không gian ( Oxyz) , cho mặt phẳng (P) đi qua điểm M(1;2;3) và cắt các trục Ox,Oy,Oz lần lượt tại các điểm A,B ,C . Viết phương trình mặt phẳng (P) sao cho M là trực tâm của tam giác ABC .
Trong không gian với hệ trục tọa độ Oxyz, cho \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8Haaeaaca % WGpbGaamyqaaGaay51GaGaeyypa0JaaGOmamaaFiaabaGaamyAaaGa % ay51GaGaey4kaSIaaGOmamaaFiaabaGaamOAaaGaay51GaGaey4kaS % IaaGOmamaaFiaabaGaam4AaaGaay51Gaaaaa!4629! \overrightarrow {OA} = 2\overrightarrow i + 2\overrightarrow j + 2\overrightarrow k\), B( -2; 2 ; 0) và C( 4; 1 ; -1 ). Trên mặt phẳng (Oxz), điểm nào dưới đây cách đều ba điểm A, B, C.
Trong không gian với hệ tọa độ Oxyz , cho đường thẳng d vuông góc với mặt phẳng (P):4x - z + 3 = 0 . Vec-tơ nào dưới đây là một vec-tơ chỉ phương của đường thẳng d?
Trong không gian với hệ trục tọa độ Oxyz cho \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8Haaeaaca % WGHbaacaGLxdcacqGH9aqpcqGHsisldaWhcaqaaiaadMgaaiaawEni % aiabgUcaRiaaikdadaWhcaqaaiaadQgaaiaawEniaiabgkHiTiaaio % dadaWhcaqaaiaadUgaaiaawEniaaaa!45B2! \overrightarrow a = - \overrightarrow i + 2\overrightarrow j - 3\overrightarrow k \) . Tọa độ của vectơ \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8Haaeaaca % WGHbaacaGLxdcaaaa!388E! \overrightarrow a \) là:
Cho tập hợp M có 10 phần tử. Số tập con gồm 2 phần tử của M là
Cho đa giác đều 32 cạnh. Gọi S là tập hợp các tứ giác tạo thành có 4 đỉnh lấy từ các đỉnh của đa giác đều. Chọn ngẫu nhiên một phần tử của S. Xác suất để chọn được một hình chữ nhật là
Cho khối chóp S.ABCD có đáy ABCD là hình chữ nhật. Một mặt phẳng thay đổi nhưng luôn song song với đáy và cắt các cạnh bên SA , SB, SC ,SD lần lượt tại M,N ,P ,Q . Gọi M',N' ,Q',P' lần lượt là hình chiếu vuông góc của M,N, P,Q lên mặt phẳng (ABCD) . Tính tỉ số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca % WGtbGaamytaaqaaiaadofacaWGbbaaaaaa!394C! \frac{{SM}}{{SA}}\) để thể tích khối đa diện MNPQ.M'N'P'Q' đạt giá trị lớn nhất.
Người ta trồng hoa vào phần đất được tô màu đen được giới hạn bởi cạnh AB,CD , đường trung bình MN của mảnh đất hình chữ nhật ABCD và một đường cong hình sin . Biết \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaadk % eacqGH9aqpcaaIYaGaeqiWda3aaeWaaeaacaWGTbaacaGLOaGaayzk % aaaaaa!3D7A! AB = 2\pi \left( m \right)\),AD = 2(m) . Tính diện tích phần còn lại
Tìm tất cả các giá trị thực của tham số m sao cho hàm số \(y = \frac{{mx + 4}}{{x + m}}\) nghịch biến trên khoảng \(\left( { - \infty ;1} \right)\)?
Cho hàm số \(y = f (x)\) liên tục, luôn dương trên \([0;3]\) và thỏa mãn \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpCpC0xbbL8-4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2 % da9maapehabaGaamOzamaabmaabaGaamiEaaGaayjkaiaawMcaaiaa % bsgacaWG4baaleaacaaIWaaabaGaaG4maaqdcqGHRiI8aOGaeyypa0 % JaaGinaaaa!434A! I = \int\limits_0^3 {f\left( x \right){\rm{d}}x} = 4\). Khi đó giá trị của tích phân \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpCpC0xbbL8-4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiabg2 % da9maapehabaWaaeWaaeaacaWGLbWaaWbaaSqabeaacaaIXaGaey4k % aSIaciiBaiaac6gadaqadaqaaiaadAgadaqadaqaaiaadIhaaiaawI % cacaGLPaaaaiaawIcacaGLPaaaaaGccqGHRaWkcaaI0aaacaGLOaGa % ayzkaaGaaeizaiaadIhaaSqaaiaaicdaaeaacaaIZaaaniabgUIiYd % aaaa!4AD3! K = \int\limits_0^3 {\left( {{e^{1 + \ln \left( {f\left( x \right)} \right)}} + 4} \right){\rm{d}}x} \) là:
Trong không gian Oxyz, cho tam giác nhọn ABC có H(2;2;1),\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4samaabm % aabaGaeyOeI0YaaSaaaeaacaaI4aaabaGaaG4maaaacaGG7aGaaGPa % VpaalaaabaGaaGinaaqaaiaaiodaaaGaai4oaiaaykW7daWcaaqaai % aaiIdaaeaacaaIZaaaaaGaayjkaiaawMcaaaaa!4277! K\left( { - \frac{8}{3};\,\frac{4}{3};\,\frac{8}{3}} \right)\) , O lần lượt là hình chiếu vuông góc của A , B, C trên các cạnh BC, AC,AB . Đường thẳng d qua A và vuông góc với mặt phẳng (ABC) có phương trình là
Kí hiệu \(z_{1}\) là nghiệm phức có phần ảo âm của phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGinaiaadQ % hadaahaaWcbeqaaiaaikdaaaGccqGHsislcaaIXaGaaGOnaiaadQha % cqGHRaWkcaaIXaGaaG4naiabg2da9iaaicdacaGGUaaaaa!40DB! 4{z^2} - 16z + 17 = 0.\) Trên mặt phẳng tọa độ điểm nào dưới đây là điểm biểu diễn số phức \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Daiabg2 % da9maabmaabaGaaGymaiabgUcaRiaaikdacaWGPbaacaGLOaGaayzk % aaGaamOEamaaBaaaleaacaaIXaaabeaakiabgkHiTmaalaaabaGaaG % 4maaqaaiaaikdaaaGaamyAaaaa!4219! w = \left( {1 + 2i} \right){z_1} - \frac{3}{2}i\)?