Lời giải của giáo viên
Ta có \(\overrightarrow {AB} = \left( {1; - 2; - 3} \right),\overrightarrow {AC} = \left( {2; - 2;0} \right),\overrightarrow {AD} = \left( {3; - 1; - 2} \right) \Rightarrow {V_{ABCD}} = \frac{1}{6}\left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right].\overrightarrow {AD} } \right| = \frac{8}{3}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian với hệ tọa độ Oxyz, cho A(10;2 - 1) và đường thẳng \(d:\frac{{x - 1}}{2} = \frac{y}{1} = \frac{{z - 1}}{3}\). Phương trình mặt phẳng (P) đi qua A, song song với d và khoảng cách từ d tới (P) là lớn nhất là
Trong không gian với hệ toạ độ Oxyz, cho 2 điểm \(A\left( {1;2;1} \right),B\left( {3; - 1;5} \right)\). Phương trình mặt phẳng (P) vuông góc với AB và hợp với các trục tọa độ một tứ diện có thể tích bằng \(\frac{3}{2}\) là
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\frac{{x + 1}}{2} = \frac{{y - 1}}{{ - 1}} = \frac{z}{2}\) và hai điểm A(1;5;0), B(3;3;6). Điểm \(M \in d\) sao cho tam giác MAB có diện tích nhỏ nhất có tọa độ là
Trong không gian với hệ tọa độ Oxyz cho ba điểm A(1;-1;1), B(2;1;-2), C(0;0;1). Gọi H(x;y;z) là trực tâm tam giác ABC thì giá trị \(x+y+z\) là kết quả nào dưới đây?
Trong không gian với hệ tọa độ Oxyz cho \(A\left( {1;2;0} \right),B\left( {3; - 1;1} \right)\) và C(1;1;1). Tính diện tích S của tam giác ABC.
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I nằm trên mặt phẳng (Oxy) và đi qua ba điểm A(1;2;- 4), B(1;- 3;1), C(2;2;3). Tọa độ tâm I là:
Trong không gian với hệ tọa độ Oxyz, cho 3 điểm \(A\left( {1;2;1} \right),B\left( {3;1;0} \right),C\left( {3; - 1;2} \right)\). Phương trình đường thẳng (d) qua A và vuông góc với mặt phẳng (ABC) là
Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A'B'C'D'. Biết A(1;0;1), B(2;1;2), C'(4;5;-5), D(1;-1;1). Tọa độ của đỉnh A' là:
Trong không gian với hệ tọa độ Oxyz, tìm trên trục Oz điểm M cách đều điểm A(2;3;4) và mặt phẳng \(\left( \alpha \right):2x + 3y + z - 17 = 0\)
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 2x - 4y + 4z - 16 = 0\) và đường thẳng \(d:\frac{{x - 1}}{1} = \frac{{y + 3}}{2} = \frac{z}{2}\). Mặt phẳng nào trong các mặt phẳng sau chứa d và tiếp xúc với mặt cầu (S)
Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A'B'C'D' có A(1;2;-1), C(3;-4;1), B'(2;-1;3) và D'(0;3;5). Giả sử tọa độ D(x;y;z) thì giá trị của \(x+2y-3z\) là kết quả nào dưới đây?
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I thuộc đường thẳng \(\Delta :\frac{x}{1} = \frac{{y + 3}}{1} = \frac{z}{2}\). Biết rằng mặt cầu (S) có bán kính bằng \(2\sqrt 2 \) và cắt mặt phẳng (Oxz) theo một đường tròn có bán kính bằng 2. Tìm tọa độ của điểm I.
Trong không gian với hệ tọa độ Oxyz, cho ba điểm \(A\left( {2; - 1;3} \right),{\rm{ }}B\left( {2;0;5} \right),{\rm{ }}C\left( {0; - 3; - 1} \right).\) Phương trình nào dưới đây là phương trình của mặt phẳng đi qua A và vuông góc với BC
Trong không gian với hệ tọa độ Oxyz cho G(1;2;3). Viết phương trình mặt phẳng (P) đi qua điểm G và cắt các trục tọa độ tại ba điểm phân biệt A, B, C sao cho G là trọng tam giác ABC.
Trong không gian với hệ tọa độ Oxyz, cho M(1;2;1). Viết phương trình mặt phẳng (P) qua M cắt trục Ox, Oy, OZ lần lượt tại A, B, C sao cho \(\frac{1}{{O{A^2}}} + \frac{1}{{O{B^2}}} + \frac{1}{{O{C^2}}}\) đạt giá trị nhỏ nhất.