Trong không gian với hệ tọa độ Oxyz viết phương trình mặt phẳng tiếp xúc với mặt cầu \({(x - 1)^2} + {y^2} + {(z + 2)^2} = 6\) đồng thời song song với hai đường thẳng \({d_1}:\dfrac{{x - 2}}{3} = \dfrac{{y - 1}}{{ - 1}} = \dfrac{z}{{ - 1}},{d_2}:\dfrac{x}{1} = \dfrac{{y + 2}}{1} = \dfrac{{z - 2}}{{ - 1}}\).
A. \(\left[ {\begin{array}{*{20}{c}}{x - y + 2z - 3 = 0}\\{x - y + 2z + 9 = 0}\end{array}} \right.\)
B. \(\left[ {\begin{array}{*{20}{c}}{x + y + 2z - 3 = 0}\\{x + y + 2z + 9 = 0}\end{array}} \right.\)
C. \(x + y + 2z + 9 = 0\)
D. \(x - y + 2z + 9 = 0\)
Lời giải của giáo viên
Ta có: \(\left( S \right)\) có tâm \(I\left( {1;\;0;\; - 2} \right)\) và bán kính \(R = \sqrt 6 .\)
\({d_1}\) có VTCP là: \(\overrightarrow {{u_1}} = \left( {3; - 1; - 1} \right),\) \({d_2}\) có VTCP là: \(\overrightarrow {{u_2}} = \left( {1;\;1; - 1} \right).\)
Ta có: \(\left\{ \begin{array}{l}\left( P \right) \bot {d_1}\\\left( P \right) \bot {d_2}\end{array} \right. \Rightarrow \overrightarrow {{n_P}} = \left[ {\overrightarrow {{u_1}} ,\;\overrightarrow {{u_2}} } \right] = \left( {2;\;2;\;4} \right) = 2\left( {1;\;1;\;2} \right).\)
Khi đó ta có phương trình \(\left( P \right)\) có dạng: \(x + y + 2z + d = 0.\)
Mặt phẳng \(\left( P \right)\) tiếp xúc với mặt cầu \(\left( S \right) \Rightarrow d\left( {I;\;\left( P \right)} \right) = R\)
\(\begin{array}{l} \Leftrightarrow \dfrac{{\left| {1 + 0 + 2.\left( { - 2} \right) + d} \right|}}{{\sqrt {{1^2} + {1^2} + {2^2}} }} = \sqrt 6 \Leftrightarrow \left| { - 3 + d} \right| = 6 \Leftrightarrow \left[ \begin{array}{l} - 3 + d = 6\\ - 3 + d = - 6\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}d = 9\\d = - 3\end{array} \right.\\ \Rightarrow \left[ \begin{array}{l}\left( {{P_1}} \right):\;\;\;x + y + 2z + 9 = 0\\\left( {{P_2}} \right):\;\;x + y + 2z - 3 = 0\end{array} \right..\end{array}\)
Chọn B.
CÂU HỎI CÙNG CHỦ ĐỀ
Diện tích mặt cầu ngoại tiếp khối hộp chữ nhật có kích thước: \(a,\,\,\sqrt 3 a,\,\,2a\) là:
Phương trình \({4^x} + 1 = {2^x}m.\cos \left( {\pi x} \right)\) có nghiệm duy nhất. Số giá trị của tham số \(m\) thỏa mãn là:
Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) đồng thời thỏa mãn \(f\left( 0 \right) = f\left( 1 \right) = 5\). Tính tích phân\(I = \int\limits_0^1 {f'\left( x \right){e^{f\left( x \right)}}{\rm{d}}x} \).
Cho khối chóp S.ABCD có đáy là hình chữ nhật, AB = a, \(AD = a\sqrt 3 \), SA vuông góc với đáy và mặt phẳng (SBC) tạo với đáy một góc 60o. Tính thể tích V của khối chóp S.ABCD.
Hàm số \(F\left( x \right) = {e^{{x^2}}}\) là nguyên hàm của hàm số nào trong các hàm số sau:
Gọi z1, z2 là các nghiệm của phương trình \({z^2} - 2z + 5 = 0\) . Tính \(P = {\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2}\) .
Có bao nhiêu số tự nhiên m để phương trình sau có nghiệm ?\({e^m} + {e^{3m}} = 2\left( {x + \sqrt {1 - {x^2}} } \right)\left( {1 + x\sqrt {1 - {x^2}} } \right)\).
Cho hình chóp S.ABC có \(SA = \dfrac{{a\sqrt 3 }}{2}\), các cạnh còn lại cùng bằng a. Bán kính R của mặt cầu ngoại tiếp hình chóp S.ABC là:
Một ô tô đang chạy với vận tốc 20 m/s thì người lái đạp phanh; từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc \(v\left( t \right) = - 10t + 20\)(m/s), trong đó t là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Hỏi từ lúc đạp phanh đến khi dừng hẳn, ô tô còn di chuyển bao nhiêu mét ?
Tìm tập xác định của hàm số \(y = {({x^2} - 3x + 2)^\pi }\).
Trong không gian với hệ tọa độ Oxyz cho tam giác ABC biết \(A(2;1;0),B(3;0;2),C(4;3; - 4)\). Viết phương trình đường phân giác trong góc A.
Trong không gian với hệ tọa độ Oxyz cho đường thẳng \(d:\left\{ {\begin{array}{*{20}{c}}{x = 1 - t}\\{y = 2 + 2t}\\{z = 3 + t}\end{array}} \right.\) và mặt phẳng (P):\(x - y + 3 = 0\) . Tính số đo góc giữa đường thẳng d và mặt phẳng (P).
Cho \(a,\,\,b,\,\,c\) là ba số thực dương, \(a > 1\) và thỏa mãn \(\log _a^2\left( {bc} \right) + {\log _a}{\left( {{b^3}{c^3} + \dfrac{{bc}}{4}} \right)^2} + 4 + \sqrt {4 - {c^2}} = 0\). Số bộ \(\left( {a;b;c} \right)\) thỏa mãn điều kiện đã cho là:
Giá trị lớn nhất của hàm số \(y = \dfrac{{{x^3} + {x^2} - m}}{{x + 1}}\) trên \(\left[ {0;2} \right]\) bằng 5. Tham số \(m\) nhận giá trị là:
Cho đường tròn \((T):{(x - 1)^2} + {(y + 2)^2} = 5\) và hai điểm A(3; -1), B(6; -2). Viết phương trình đường thẳng cắt (T) tại hai điểm C, D sao cho ABCD là hình bình hành.