Vì tình hình dịch Covid-19 ngày càng phức tạp nên một gia đình nọ quyết định tích trự một lượng lương thực để dùng dần. Theo dự kiến, với mức tiêu thụ lương thực không đổi như dự định thì lượng lương thực dự trữ đó sẽ đủ dùng cho 100 ngày. Nhưng thực tế, mức tiêu thụ lương thực tăng thêm 4% mỗi ngày (ngày sau tăng thêm 4% so với ngày trước đó). Hỏi thực tế lượng lương thực dự trữ đó chỉ đủ dùng cho bao nhiêu ngày ?
A. 40
B. 41
C. 42
D. 43
Lời giải của giáo viên
Trên thực tế
Ngày đầu tiên, lượng thức ăn tiêu thụ là x.
Ngày thứ hai, lượng thức ăn tiêu thụ là \(x + 4\% x = \left( {1 + 4\% } \right)x\)
Ngày thứ ba, lượng thức ăn tiêu thụ là \(\left( {1 + 4\% } \right)x + 4\% \left[ {\left( {1 + 4\% } \right)x} \right] = {\left( {1 + 4\% } \right)^2}x\)
...
Ngày thứ n, lượng thức ăn tiêu thụ là \({\left( {1 + 4\% } \right)^{n - 1}}x\)
Suy ra \(x + \left( {1 + 4\% } \right)x + {\left( {1 + 4\% } \right)^2}x + ... + {\left( {1 + 4\% } \right)^{n - 1}}x = 100x\)
\(x.\frac{{{{\left( {1 + 4\% } \right)}^n} - 1}}{{\left( {1 + 4\% } \right) - 1}} = 100x \Rightarrow n = {\log _{\left( {1 + 4\% } \right)}}\left( {100.4\% + 1} \right) = 41\)
CÂU HỎI CÙNG CHỦ ĐỀ
Hàm số y = f(x) có bảng biến thiên dưới đây
Công thức đường tiệm cận đứng của đồ thị hàm số y = f(x) là
Cho khối chóp tứ giác đều S.ABCD có tất cả các cạnh bằng a. Tính góc giữa góc giữa mặt bên và mặt đáy.
Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB=AD=2a, \(AA'=3a\sqrt{2}\). Tính diện tích toàn phần S của hình trụ có hai đáy lần lượt ngoại tiếp hai đáy của hình hộp chữ nhật đã cho.
Cho x, y là các số thực thỏa mãn \({{\log }_{3}}\left( x+y \right)={{\log }_{4}}\left( {{x}^{2}}+{{y}^{2}} \right)\). Tính tổng tất cả các giá trị nguyên thuộc tập giá trị của biểu thức \(P={{x}^{3}}+{{y}^{3}}\).
Cho mặt cầu có bán kính R = 2. Thể tích khối cầu đã cho bằng
Cho hình lăng trụ tứ giác ABCD.A'B'C'D' có đáy ABCD là hình vuông cạnh a và thể tích bằng 3a3. Tính chiều cao h của lăng trụ đã cho.
Cho hàm số y = f(x) liên tục trên R thỏa mãn \(\int\limits_0^1 {f\left( x \right)dx} = 3\) và \(\int\limits_1^5 {f\left( x \right)dx} = 9\). Tính tích phân \(I = \int\limits_{ - 1}^1 {f\left( {\left| {3x - 2} \right|} \right)dx} \).
Kí hiệu \({{z}_{0}}\) là nghiệm phức có phần ảo dương của phương trình \(4{{z}^{2}}-16z+17=0.\) Trên mặt phẳng toạ độ, điểm nào dưới đây là điểm biểu diễn số phức \(w=i{{z}_{0}}\)?
Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):3x+4y+2z+4=0\) và điểm \(A\left( 1;-2;3 \right)\). Tính khoảng cách d từ điểm A đến mặt phẳng \(\left( P \right)\).
Gọi x1, x2 là hai nghiệm nguyên dương của bất phương trình \({\log _2}\left( {1 + x} \right) < 2\). Tính giá trị của \(P = {x_1} + {x_2}\).
Tập xác định của hàm số \(y = {\left( {{x^2} - 7x + 10} \right)^{\frac{5}{3}}}\) là
Cho khối lăng trụ ABC.A'B'C' có thể tích bằng 1. Gọi M,N lần lượt là trung điểm của các đoạn thẳng AA' và BB'. Mặt phẳng \(\left( CMN \right)\) cắt các đường thẳng C'A', C'B' lần lượt tại P và Q. Thể tích của khối đa diện lồi ABCPQC' bằng
Trong không gian Oxyz, gọi \(\left( \alpha \right)\) là mặt phẳng đi qua điểm \(A\left( 1;2;3 \right)\) và song song với mặt phẳng \(\left( \beta \right):x-4y+z+12=0\). Phương trình nào sau đây là phương trình của \(\left( \alpha \right)\) ?
Điểm M trong hình vẽ bên là điểm biểu diễn số phức nào ?