Lời giải của giáo viên
CÂU HỎI CÙNG CHỦ ĐỀ
Cho biểu thức \(P = {\left( {\sqrt[3]{x} - \frac{1}{{\sqrt x }}} \right)^{10}}\) với \(x>0\). Tìm số hạng không chứa \(x\) trong khai triển nhị thức Niu-tơn của P.
Với điều kiện nào của m thì phương trình \((3{m^2} - 4)x - 1 = m - x\) có nghiệm duy nhất?
Cho hai số thực \(a, b\) thỏa mãn \({\log _{{a^2} + 4{b^2} + 1}}\left( {2a - 8b} \right) = 1\). Tính \(P = \frac{a}{b}\) khi biểu thức \(S = 4a + 6b - 5\) đạt giá trị lớn nhất.
Hàm số nào sau đây có bảng biến thiên như hình bên:
Cho hàm số có bảng xét dấu của đạo hàm như sau
Hàm số \(y = f\left( {2x + 1} \right) + \frac{2}{3}{x^3} - 8x + 2019\) nghịch biến trên khoảng nào dưới đây?
Gọi S là tập hợp tất cả các giá trị nguyên của tham số m thuộc đoạn \(\left[ { - 10;3} \right]\) để hàm số \(y = - {x^3} - 6{x^2} + \left( {m - 9} \right)x + 2019\) nghịch biến trên khoảng \(\left( { - \infty ; - 1} \right)\). Hỏi S có bao nhiêu phần tử?
Giả sử vào cuối năm thì một đơn vị tiền tệ mất 10% giá trị so với đầu năm. Tìm số nguyên dương nhỏ nhất sao cho sau n năm, đơn vị tiền tệ sẽ mất đi ít nhất 90% giá trị của nó?
Với \(a\) là số thực dương tùy ý khác 1, giá trị của \({\log _{{a^3}}}a\) bằng:
Nguyên hàm của hàm số \(f\left( x \right) = \sqrt {3x + 2} \) là
Một khối trụ có bán kính đáy bằng 2 cm và có thiết diện qua trục là một hình vuông. Tính thể tích của khối trụ là:
Xét các số thực với \(a \ne 0,b > 0\) sao cho phương trình \(a{x^3} - {x^2} + b = 0\) có ít nhất hai nghiệm thực. Giá trị lớn nhất của biểu thức \(a^2b\) bằng:
Cho hàm số \(y = a{x^4} + b{x^2} + c{\rm{ }}\left( {a,b,c \in R} \right)\) có đồ thị như hình vẽ bên. Số điểm cực trị của hàm số đã cho là
Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?
Tập nghiệm của phương trình \(\sqrt {x - 2} \left( {{x^2} - 3x + 2} \right) = 0\) là :
Phương trình \({3^x}{.2^{x + 1}} = 72\) có nghiệm là