Lời giải của giáo viên
CÂU HỎI CÙNG CHỦ ĐỀ
Cho biểu thức \(P = {\left( {\sqrt[3]{x} - \frac{1}{{\sqrt x }}} \right)^{10}}\) với \(x>0\). Tìm số hạng không chứa \(x\) trong khai triển nhị thức Niu-tơn của P.
Cho hai số thực \(a, b\) thỏa mãn \({\log _{{a^2} + 4{b^2} + 1}}\left( {2a - 8b} \right) = 1\). Tính \(P = \frac{a}{b}\) khi biểu thức \(S = 4a + 6b - 5\) đạt giá trị lớn nhất.
Với điều kiện nào của m thì phương trình \((3{m^2} - 4)x - 1 = m - x\) có nghiệm duy nhất?
Nguyên hàm của hàm số \(f\left( x \right) = \sqrt {3x + 2} \) là
Hàm số nào sau đây có bảng biến thiên như hình bên:
Gọi S là tập hợp tất cả các giá trị nguyên của tham số m thuộc đoạn \(\left[ { - 10;3} \right]\) để hàm số \(y = - {x^3} - 6{x^2} + \left( {m - 9} \right)x + 2019\) nghịch biến trên khoảng \(\left( { - \infty ; - 1} \right)\). Hỏi S có bao nhiêu phần tử?
Xét các số thực với \(a \ne 0,b > 0\) sao cho phương trình \(a{x^3} - {x^2} + b = 0\) có ít nhất hai nghiệm thực. Giá trị lớn nhất của biểu thức \(a^2b\) bằng:
Cho hàm số có bảng xét dấu của đạo hàm như sau
Hàm số \(y = f\left( {2x + 1} \right) + \frac{2}{3}{x^3} - 8x + 2019\) nghịch biến trên khoảng nào dưới đây?
Với \(a, b\) là các tham số thực. Giá trị tích phân \(\int\limits_0^b {\left( {3{x^2} - 2ax - 1} \right){\rm{d}}x} \) bằng
Phương trình \({3^x}{.2^{x + 1}} = 72\) có nghiệm là
Giả sử vào cuối năm thì một đơn vị tiền tệ mất 10% giá trị so với đầu năm. Tìm số nguyên dương nhỏ nhất sao cho sau n năm, đơn vị tiền tệ sẽ mất đi ít nhất 90% giá trị của nó?
Một khối trụ có bán kính đáy bằng 2 cm và có thiết diện qua trục là một hình vuông. Tính thể tích của khối trụ là:
Cho hàm số \(y = a{x^4} + b{x^2} + c{\rm{ }}\left( {a,b,c \in R} \right)\) có đồ thị như hình vẽ bên. Số điểm cực trị của hàm số đã cho là
Cho khối lăng trụ tam giác ABC.A'B'C'. Gọi M, N lần lượt thuộc các cạnh bên AA', CC' sao cho \(MA = MA';NC = 4NC'\). Gọi G là trọng tâm tam giác ABC. Hỏi trong bốn khối tứ diện \(GA'B'C',BB'MN,ABB'C'\) và A'BCN, khối tứ diện nào có thể tích nhỏ nhất?
Giá trị lớn nhất của hàm số \(y = 4{x^2} + \frac{1}{x} - 2\) trên đoạn \(\left[ { - 1;\,2} \right]\) bằng: