Lời giải của giáo viên
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian Oxyz, hình chiếu vuông góc của điểm M(2 ; 1 ; -1) trên trục Oz có tọa độ là
Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} + 2x - 2z - 7 = 0\). Bán kính của mặt cầu đã cho bằng
Thể tích của khối nón có chiều cao h và bán kính đáy r là
Trong không gian Oxyz, cho điểm A(0 ;4 ;- 3). Xét đường thẳng d thay đổi, song song với trục Oz và cách trục Oz một khoảng bằng 3. Khi khoảng cách từ A đến d nhỏ nhất, d đi qua điểm nào dưới đây ?
Cho lăng trụ ABC. A’B’C’ có chiều cao bằng 8 và đáy là tam giác đều cạnh bằng 6. Gọi M, N và P lần lượt là tâm của các mặt bên ABB’A’, ACC’A ; và BCC’B’. Thể tích của khối đa diện lồi có các đỉnh là các điểm A, B, C, M, N, P
Xét các số phức z thỏa mãn \(\left| z \right| = \sqrt 2 \). Trên mặt phẳng tọa độ Oxy, tập hợp điểm biểu diễn các số phức \(w = \frac{{4 + iz}}{{1 + z}}\) là một đường tròn có bán kính bằng
Cho hai số phức z1 = 1 - i và z2 = 1 + 2i. Trên mặt phẳng tọa độ Oxy, điểm biểu diễn số phức 3z1 + z2 có tọa độ là
Cho phương trình \({\log _9}{x^2} - {\log _3}\left( {3x - 1} \right) = - {\log _3}m\) (m là tham số thực). Có tất cả bao nhiêu giá trị nguyên của m để phương trình đã cho có nghiệm ?
Cho hàm số f(x) có đạo hàm liên tục trên R. Biết \(f\left( 4 \right) = 1\) và \(\int\limits_0^1 {xf(4x)dx = 1} \), khi đó \(\int\limits_0^4 {{x^2}f'(x)dx} \) bằng
Cho hàm số \(y = \frac{{x - 3}}{{x - 2}} + \frac{{x - 2}}{{x - 1}} + \frac{{x - 1}}{x} + \frac{x}{{x + 1}}\) và \(y = \left| {x + 2} \right| - x + m\) (m là tham số thực) có đồ thị lần lượt là (C1) và (C2). Tập hợp tất cả các giá trị của m để (C1) và (C2) cắt nhau tại đúng 4 điểm phân biệt là
Cho hàm số \(f(x)\), hàm số \(y = f'\left( x \right)\) liên tục trên R và có đồ thị như hình vẽ bên. Bất phương trình \(f\left( x \right) < x + m\) (m là tham số thực) nghiệm đúng với mọi \(x \in \left( {0;2} \right)\) khi và chỉ khi
Cho số phức z thỏa mãn \(3\left( {\overline z + i} \right) - \left( {2 - i} \right)z = 3 + 10i\). Môđun của z bằng
Cho hàm số f(x), bảng biến thiên của hàm số f’(x) như sau:
Số điểm cực trị của hàm số y = f(x2 – 2x) là
Gọi \({z_1},{z_2}\) là hai nghiệm phức của phương trình \({z^2} - 6z + 10 = 0\). Giá trị \(z_1^2 + z_2^2\) bằng: