Xét các số phức \(z\) thỏa mãn \(\left( {z + 2i} \right)\left( {\overline z + 2} \right)\) là số thuần ảo. Biết rằng tập hợp tất cả các điểm biễu diễn của \(z\) là một đường tròn, tâm của đường tròn đó có tọa độ là
A. \(\left( {1; - 1} \right)\)
B. \((1;1)\)
C. \((-1;1)\)
D. \((-1;-1)\)
Lời giải của giáo viên
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y=f(x)\) liên tục trên \(R\) và có đồ thị như hình vẽ dưới đây. Tập hợp tất cả các giá trị thực của tham số \(m\) để phương trình \(f\left( {\sin x} \right) = m\) có nghiệm thuộc khoảng \(\left( {0;\pi } \right)\) là
Tìm tất cả các giá trị thực của tham số \(m\) để hàm số \(y = - {x^3} - 6{x^2} + \left( {4m - 9} \right)x + 4\) nghịch biến trên khoảng \(\left( { - \infty ; - 1} \right)\) là
Cho hàm số \(f(x)\)( có đạo hàm \(f'\left( x \right) = x\left( {x - 1} \right){\left( {x + 2} \right)^3},\forall x \in R\). Số điểm cực trị của hàm số đã cho là
Cho hàm số \(y=f(x)\) có bảng biến thiên như sau
Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là
Cho hình chóp \(S,ABCD\) có đáy là hình thoi cạnh \(a\), \(\widehat {BAD} = 60^0\), \(SA=a\) và \(SA\) vuông góc với mặt phẳng đáy. Khoảng cách từ \(B\) đến mặt phẳng \((SCD\) bằng
Với \(a\) và \(b\) là hai số thực dương tùy ý, \(\log \left( {a{b^2}} \right)\) bằng
Cho hàm số \(f(x)\) có bảng xét dấu của đạo hàm như sau:
Hàm số \(y = 3f\left( {x + 2} \right) - {x^3} + 3x\) đồng biến trên khoảng nào dưới đây?
Gọi S là tập hợp tất cả các giá trị của tham số \(m\) để bất phương trình \({m^2}\left( {{x^4} - 1} \right) + m\left( {{x^2} - 1} \right) - 6\left( {x - 1} \right) \ge 0\) đúng với mọi \(x \in R\). Tổng giá trị của tất cả các phần tử thuộc S bằng
Họ nguyên hàm của hàm số \(f\left( x \right) = {{\rm{e}}^x} + x\)
Cho hàm số \(y=f(x)\). Hàm số \(y=f'(x)\) có bảng biến thiên như sau
Bất phương trình \(f\left( x \right) < {{\rm{e}}^x} + m\) đúng với mọi \(x \in \left( { - 1;1} \right)\) khi và chỉ khi
Tìm các số thực \(a\) và \(b\) thỏa mãn \(2a + \left( {b + i} \right)i = 1 + 2i\) với \(i\) là đơn vị ảo.
Trong không gian Oxyz, cho hai điểm \(A\left( {1;\,1;\, - 1} \right)\) và \(B\left( {2;\,3;\,2} \right)\). Véctơ \(\overrightarrow {AB} \) có tọa độ là
Trong không gian Oxyz, mặt phẳng (Oxz) có phương trình là
Cho hàm số \(f\left( x \right) = m{x^4} + n{x^3} + p{x^2} + qx + r\), (với \(m,n,p,q,r \in R\)). Hàm số \(y = f'\left( x \right)\) có đồ thị như hình vẽ bên dưới:
Tập nghiệm của phương trình \(f\left( x \right) = r\) có số phần tử là