Xét f(x) là một hàm số liên tục trê đoạn [a ; b], ( với a < b) và F(x) là một nguyên hàm của hàm số f(x) trên đoạn [a ; b]. Mệnh đề nào dưới đây đúng ?
A. \(\int\limits_a^b {f(3x + 5)\,dx = F(3x + 5)\left| \begin{array}{l}b\\a\end{array} \right.} \).
B. \(\int\limits_a^b {f(x + 1)\,dx = F(x)\left| \begin{array}{l}b\\a\end{array} \right.} \).
C. \(\int\limits_a^b {f(2x)\,dx = 2\left( {F(b) - F(a)} \right)} \).
D. \(\int\limits_a^b f (x)\,dx = F(b) - F(a)\).
Lời giải của giáo viên
Áp dụng khái niệm của tích phân: Xét \(f\left( x \right)\) là một hàm số liên tục trê đoạn \(\left[ {a;b} \right]\), ( với \(a < b\)) và \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {a;b} \right]\) ta có\(\int\limits_a^b f (x)\,dx = F(b) - F(a)\).
Chọn đáp án D.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số f(x) có đạo hàm trên R. Nếu hàm số f(x) đồng biến trên R thì
Trong không gian với hệ trục toạ độ \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 9\), điểm \(A\left( {0;0;2} \right)\). Phương trình mặt phẳng \(\left( P \right)\) đi qua \(A\) và cắt mặt cầu \(\left( S \right)\) theo thiết diện là hình tròn \(\left( C \right)\)có diện tích nhỏ nhất ?
Viết các số theo thứ tự tăng dần: \({\left( {{1 \over 3}} \right)^0}\,,\,\,{\left( {{1 \over 3}} \right)^{ - 1}},\,\,{\left( {{1 \over 3}} \right)^\pi },\,\,{\left( {{1 \over 3}} \right)^{\sqrt 2 }}\).
Hàm số y = sinx là một nguyên hàm của hàm số nào sau đây ?
Cho hàm số y = f(x) có bảng biến thiên như sau:
Khẳng định nào sau đây đúng ?
Phép đối xứng qua mặt phẳng biến một điểm thuộc mặt phẳng đó thành:
Trong không gian với hệ trục tọa độ \(Oxyz\), cho điểm \(M(1;2;3).\) Gọi \((\alpha )\) là mặt phẳng chứa trục \(Oy\) và cách \(M\) một khoảng lớn nhất. Phương trình của \((\alpha )\) là:
Tìm \(I = \int {\left( {2{x^2} - \dfrac{1}{{\sqrt[3]{x}}} - \dfrac{1}{{{{\cos }^2}x}}} \right)\,dx} \) trên khoảng \(\left( {0;\dfrac{\pi }{2}} \right)\).
Tích của hai số phức \({z_1} = 3 + 2i\,,\,\,{z_2} = 2 - 3i\) là;
Cho a, b là các số thực dương, thỏa mãn \({a^{{3 \over 4}}} > {a^{{4 \over 5}\,\,\,}}\,\,,\,\,\,{\log _b}{1 \over 2} < {\log _b}{2 \over 3}\). Mệnh đề nào sau đây đúng ?
Cho hàm số \(f(x) = 2x + m + {\log _2}[m{x^2} - 2(m - 2)x + 2m - 1]\) ( m là tham số). Tìm tất cả các giá trị của m để hàm số \(f(x)\) xác định với mọi \(x \in R\).
Cho hình chóp tứ giác đều \(S.ABCD\) có chiều cao h, góc ở đỉnh của mặt bên bằng \({60^0}\). Thể tích hình chóp là: