Đề thi thử THPT QG năm 2022 môn Toán - Trường THPT Trương Vĩnh Ký
Đề thi thử THPT QG năm 2022 môn Toán
-
Hocon247
-
50 câu hỏi
-
90 phút
-
65 lượt thi
-
Trung bình
Tham gia [ Hs Hocon247.com ] - Cộng Đồng Luyện Thi Trực Tuyến để được học tập những kiến thức bổ ích từ HocOn247.com
Cho hàm số \(f(x) = 2x + m + {\log _2}[m{x^2} - 2(m - 2)x + 2m - 1]\) ( m là tham số). Tìm tất cả các giá trị của m để hàm số \(f(x)\) xác định với mọi \(x \in R\).
Hàm số \(f\left( x \right)\) xác định với mọi \(x \in R\) khi và chỉ khi \(m{x^2} - 2\left( {m - 2} \right)x + 2m - 1 > 0 \forall x \in \mathbb{R}\)
+ Với \(m = 0\) ta có: \(4x - 1 > 0\) (không thỏa mãn)
+ Với \(m \ne 0\), ta có: \(m{x^2} - 2\left( {m - 2} \right)x + 2m - 1 > 0 \forall x \in \mathbb{R}\)
\(\Leftrightarrow \left\{ \begin{array}{l}m > 0\\\Delta ' = - {m^2} - 3m + 4 < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m > 0\\\left[ \begin{array}{l}m > 1\\m < - 4\end{array} \right.\end{array} \right. \Leftrightarrow m > 1\)
Chọn đáp án B.
Số nghiệm của phương trình \({\log _3}({x^3} - 3x) = \dfrac{1}{2}\) là:
Điều kiện: \({x^3} - 3x > 0\)
Ta có: \({\log _3}({x^3} - 3x) = \dfrac{1}{2}\)
\(\Leftrightarrow \left( {{x^3} - 3x} \right) = {3^{\dfrac{1}{2}}}\)
Dùng máy tính giải phương trình, so sánh điều kiện phương trình có 1 nghiệm.
Chọn đáp án D.
Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi các đường \(y = \sqrt {2 - x} ,\,y = x\) xung quanh trục Ox được tính theo công thức nào sau đây :
Điều kiện: \(x \le 2\)
Xét hương trình hoành độ giao điểm ta có:
\(\sqrt {2 - x} = x \Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\2 - x = {x^2}\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\{x^2} + x - 2 = 0\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\\left[ \begin{array}{l}x = - 2\\x = 1\end{array} \right.\end{array} \right. \Rightarrow x = 1\)
Khi đó, thể tích khối tròn xoay cần tính được xác được bởi công thức: \(V = \pi \int\limits_0^1 {{x^2}\,dx + \pi \int\limits_1^2 {\left( {2 - x} \right)\,dx} } \)
Chọn đáp án D.
Họ nguyên hàm của hàm số \(f(x) = \dfrac{{\sin x}}{{{{\cos }^2}x}}\) là
Ta có: \(\int {\dfrac{{\sin x}}{{{{\cos }^2}x}}} \,dx = - \int {\dfrac{1}{{{{\cos }^2}x}}} \,d\left( {\cos x} \right)\)\(\, = \dfrac{1}{{\cos x}} + C.\)
Chọn đáp án D.
Đồ thị sau đây là của hàm số nào?
Đths có TCĐ: \(x = - 1\) nên loại A, C.
Đths đi qua điểm \(\left( {0; - 1} \right)\) nên chỉ có D thỏa mãn.
Đồ tị hàm số \(y = {x^3} - 3{x^2} + 1\) cắt đường thẳng y = m tại ba điểm phân biệt thì tất cả các giá trị tham số m thỏa mãn là
\(y = {x^3} - 3{x^2} + 1\)
\(TXD:D = R\)
\(\begin{array}{l}y' = 3{x^2} - 6x\\y' = 0 \Leftrightarrow 3{x^2} - 6x = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\end{array}\)
Từ BBT ta có đồ thị hàm số \(y = {x^3} - 3{x^2} + 1\) cắt đường thẳng \(y = m\) tại 3 điểm phân biệt
\( \Rightarrow - 3 < m < 1\)
Mệnh đề nào sau đây là mệnh đề đúng?
Số các cạnh của một hình đa diện luôn:
Tứ diện là hình đa diện đơn giản nhất có cạnh bằng 6 nên số cạnh của hình đa diện luôn lớn hơn hoặc bằng 6.
Chọn D.
Trong các mệnh đề sau, mệnh đề nào sai?
- Khối lăng trụ tam giác, khối hộplà các khối đa diện.
- Khối tứ diện là một khối đa diện lồi.
- Không phải khi nào lắp ghép 2 khối đa diện ta cũng được khối đa diện lồi.
Chọn C.
Chú ý khi giải:
Một số em sẽ nghĩ đáp án C là đúng nhưng thực chất khi lắp ghép hai khối đa diện ta chưa chắc đã nhận được khối đa diện lồi.
Cho tứ diện \(ABCD\) có cạnh \(AD\) vuông góc với mặt phẳng \(\left( {ABC} \right)\) và cạnh \(BD\) vuông góc với cạnh \(BC\). Khi quay các cạnh tứ diện đó xung quanh trục là cạnh \(AB\), có bao nhiêu hình nón được tạo thành?
Khi quay quanh cạnh AB thì ta có một hình chóp đỉnh B, đáy là đường tròn tâm A, bán kính AD.
Tiếp tục ta có \(BD \bot BC,\,DA \bot BC \Rightarrow BC \bot AB\)
Vậy khi quay quanh AB, ta có thêm hình chóp đỉnh A đáy là đường tròn tâm B bán kính BC.
Chọn B.
Trong không gian với hệ trục tọa độ \(Oxyz\), gọi \((P)\)là mặt phẳng song song với mặt phẳng \(Oxz\) và cắt mặt cầu \({(x - 1)^2} + {(y + 2)^2} + {z^2} = 12\)theo đường tròn có chu vi lớn nhất. Phương trình của \((P)\) là:
Phương pháp tự luận
Mặt phẳng \((P)\) cắt mặt cầu \({(x - 1)^2} + {(y + 2)^2} + {z^2} = 12\) theo đường tròn có chu vi lớn nhất nên mặt phẳng \((P)\) đi qua tâm \(I(1; - 2;0)\).
Phương trình mặt phẳng \((P)\) song song với mặt phẳng \(Oxz\) có dạng :\(Ay + B = 0\)
Do \((P)\) đi qua tâm \(I(1; - 2;0)\)có phương trình dạng: \(y + 2 = 0\).
Phương pháp trắc nghiệm
+) Mặt phẳng \((P)\) song song với mặt phẳng \(Oxz\) nên lọai đáp án D.
+) Mặt phẳng \((P)\)đi qua tâm \(I(1; - 2;0)\)nên thay tọa độ điểm \(I\)vào các phương trình loại được đáp án B,C.
Tập hợp các điểm biểu diễn số phức z thỏa mãn \(|z| = 3\) là:
Đặt z = x + yi
\(\begin{array}{l}\left| z \right| = 3 \Rightarrow \left| {x + yi} \right| = 3\\ \Rightarrow \sqrt {{x^2} + {y^2}} = 3\end{array}\)
Tập hợp biểu diễn số phức z là đường tròn tâm 0( 0, 0), bán kính bằng 3
Tích của hai số phức \({z_1} = 3 + 2i\,,\,\,{z_2} = 2 - 3i\) là;
Với z1= 3 + 2i , z2= 2 – 3i
\({z_1}.{z_2} = \left( {3 + 2i} \right)\left( {2 - 3i} \right) \)\(\,= 6 - 5i - 6{i^2} = 12 - 5i\)
Hàm số \(y = - {x^3} + 3x - 5\) đồng biến trên khoảng nào ?
\(y = - {x^3} + 3x - 5\)
\(TXD:D = R\)
\(\begin{array}{l}y' = - 3{x^2} + 3\\y' = 0 \Leftrightarrow - 3{x^2} + 3 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = - 1\end{array} \right.\end{array}\)
Đồng biến trên \((-1,1) .\)
Trong các hàm số sau, hàm số nào luôn nghịch biến trên R ?
Đáp án A: \(y' = \cos x - 1 \le 0,\forall x \in \mathbb{R}\) vì \(\cos x \le 1\) với mọi \(x \in \mathbb{R}\)
Vậy hàm số \(y = \sin x - x\) luôn nghịch biến trên \(\mathbb{R}\)
Cho a, b là các số thực dương, thỏa mãn \({a^{{3 \over 4}}} > {a^{{4 \over 5}\,\,\,}}\,\,,\,\,\,{\log _b}{1 \over 2} < {\log _b}{2 \over 3}\). Mệnh đề nào sau đây đúng ?
Ta có: \({a^{\dfrac{3}{4}}} > {a^{\dfrac{4}{5}\,\,\,}}\,\, \Rightarrow 0 < a < 1\,\); \(\,\,{\log _b}\dfrac{1}{2} < {\log _b}\dfrac{2}{3} \Rightarrow b > 1\)
Chọn đáp án C.
Bất phương trình sau \({\log _{{1 \over 3}}}{\log _4}({x^2} - 5) > 0\) có tập nghiệm là:
Điều kiện: \({x^2} - 5 > 0\)
Ta có: \({\log _{\dfrac{1}{3}}}{\log _4}({x^2} - 5) > 0\)
\(\Leftrightarrow 0 < {\log _4}({x^2} - 5) < 1\)
\( \Leftrightarrow \left\{ \begin{array}{l}{x^2} - 5 < 4\\{x^2} - 5 > 1\end{array} \right. \)
\(\Leftrightarrow \)\(x \in ( - 3; - \sqrt 6 ) \cup (\sqrt 6 ;3)\)
Chọn đáp án A.
Cho hình nón có đỉnh \(S\), độ dài đường sing bằng \(2a\). Một mặt phẳng qua đỉnh \(S\) cắt hình nón theo một thiết diện, diện tích lớn nhất của thiết diện là
Chiều cao của hình nón là: \(h = \sqrt {{l^2} - {r^2}} = \sqrt {{{\left( {2a} \right)}^2} - {{\left( {a\sqrt 2 } \right)}^2}} \)\(\,= a\sqrt 2 \)
Thiết diện lớn nhất đi qua S và trục của hình nón có diện tích là:
\(S = \dfrac{1}{2}h.2r = \dfrac{1}{2}a\sqrt 2 .2.a\sqrt 2 = 2{a^2}\)
Chọn A
Trong không gian với hệ trục tọa độ \(Oxyz\), cho điểm \(M(1;2;3).\) Gọi \((\alpha )\) là mặt phẳng chứa trục \(Oy\) và cách \(M\) một khoảng lớn nhất. Phương trình của \((\alpha )\) là:
Phương pháp tự luận:
+) Gọi \(H,K\)lần lượt là hình chiếu vuông góc của \(M\)trên mặt phẳng\((\alpha )\) và trục \(Oy\).
Ta có : \(K(0;2;0)\)
\(d(M,(\alpha )) = MH \le MK\)
Vậy khoảng cách từ \(M\) đến mặt phẳng\((\alpha )\) lớn nhất khi mặt phẳng\((\alpha )\)qua \(K\) và vuông góc với\(MK\).
Phương trình mặt phẳng: \(x + 3z = 0\)
Tìm \(I = \int {\left( {2{x^2} - \dfrac{1}{{\sqrt[3]{x}}} - \dfrac{1}{{{{\cos }^2}x}}} \right)\,dx} \) trên khoảng \(\left( {0;\dfrac{\pi }{2}} \right)\).
Ta có:\(I = \int {\left( {2{x^2} - \dfrac{1}{{\sqrt[3]{x}}} - \dfrac{1}{{{{\cos }^2}x}}} \right)\,dx} \)\(\, = \int {\left( {2{x^2} - {x^{ - \dfrac{1}{3}}} - \dfrac{1}{{{{\cos }^2}x}}} \right)dx} \)\(\,= \dfrac{2}{3}{x^3} - \dfrac{3}{2}{x^{\dfrac{2}{3}}} - \tan x + C\)
Chọn đáp án B.
Diện tích hình phẳng giới hạn bởi \(y = {x^2} - x + 3,\,\,y = 2x + 1\) là:
Phương trình hoành độ giao điểm \({x^2} - x + 3 = 2x + 1 \Leftrightarrow {x^2} - 3x + 2 = 0\)
\( \Leftrightarrow \left( {x - 1} \right)\left( {x - 2} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 2\end{array} \right.\).
Diện tích hình phẳng giới hạn bởi hai đồ thì được xác định bằng công thức
\(\begin{array}{l}S = \int\limits_1^2 {\left| {\left( {{x^2} - x + 3} \right) - \left( {2x + 1} \right)} \right|\,dx} \\ = \int\limits_1^2 {\left| {{x^2} - 3x + 2} \right|} \,dx\\ = \left| {\dfrac{{{x^3}}}{3} - \dfrac{3}{2}{x^2} + 2x} \right|\left| \begin{array}{l}^2\\_1\end{array} \right.\\ = \left| {\dfrac{2}{3} - \dfrac{5}{6}} \right| = \dfrac{1}{6}.\end{array}\)
Chọn đáp án C.
Phép đối xứng qua mặt phẳng biến một điểm thuộc mặt phẳng đó thành:
Phép đối xứng qua mặt phẳng (P) là phép biến hình biến mỗi điểm thuộc (P) thành chính nó.
Chọn D.
Phép dời hình biến đoạn thẳng thành:
Phép dời hình bảo toàn khoảng cách giữa 2 điểm nên đoạn thẳng sẽ có độ dài bằng đoạn thẳng đã cho.
Chọn A.
Cho hàm số \(y = {x^4} - 4{x^2} + 3\). Mệnh đề nào dưới đây sai ?
Ta có: \(y' = 4{x^3} - 8x = 0\) \( \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \pm \sqrt 2 \end{array} \right.\)
Do đó hàm số có 3 điểm cực trị nên A sai.
Cho hàm số y = f(x) có bảng biến thiên như sau:
Khẳng định nào sau đây đúng ?
Hàm số đạt cực tiểu tại x=4, đạt cực đại tại x=2 nên chỉ có D đúng.
Nếu x > y > 0 thì \({{{x^y}{y^x}} \over {{y^y}{x^x}}}\) bằng :
Ta có: \(\dfrac{{{x^y}{y^x}}}{{{y^y}{x^x}}} = {\left( {\dfrac{x}{y}} \right)^y}.{\left( {\dfrac{y}{x}} \right)^x}\)\(\, = {\left( {\dfrac{x}{y}} \right)^y}{\left( {\dfrac{x}{y}} \right)^{ - x}} = {\left( {\dfrac{x}{y}} \right)^{y - x}}\)
Chọn đáp án C.
Tìm các điểm cực trị của hàm số \(y = {x^{{4 \over 5}}}{(x - 4)^{2\,}},\,\,x > 0\).
Ta có: \(y = {x^{\dfrac{4}{5}}}{(x - 4)^{2\,}}\)
\(\Rightarrow y' = {\left( {{x^{\dfrac{4}{5}}}{{(x - 4)}^{2\,}}} \right)^\prime }\)
\(= \dfrac{4}{5}{x^{\dfrac{{ - 1}}{5}}}{\left( {x - 4} \right)^2} + {x^{\dfrac{4}{5}}}\left( {2x - 8} \right)\)
\( = {x^{\dfrac{{ - 1}}{5}}}\left( {x - 4} \right)\left( {\dfrac{4}{5}\left( {x - 4} \right) + 2x} \right)\)
\(= {x^{\dfrac{{ - 1}}{5}}}\left( {x - 4} \right)\left( {\dfrac{{14}}{5}x - \dfrac{{16}}{5}} \right)\)
Các điểm cực trị là \(x = 4\) và \(x = \dfrac{8}{7}\)
Chọn đáp án A.
Hàm số y = sinx là một nguyên hàm của hàm số nào sau đây ?
Ta có: \(\int {\left( { - \cos x} \right)} \,dx = \sin x + C.\)
Chọn đáp án A.
Tính nguyên hàm \(\int {\dfrac{{{{\left( {3\ln x + 2} \right)}^4}}}{x}\,dx} \) ta được:
Ta có:
\(\begin{array}{l}\int {\dfrac{{{{\left( {3\ln x + 2} \right)}^4}}}{x}\,dx} \\ = \int {\left( {{{\left( {3\ln x + 2} \right)}^4}} \right)} \,d\left( {\ln x} \right)\\ = \dfrac{1}{3}\int {\left( {{{\left( {3\ln x + 2} \right)}^4}} \right)} \,d\left( {3\ln x + 2} \right)\\ = \dfrac{1}{3}.\dfrac{{{{\left( {3\ln 2 + 2} \right)}^5}}}{5} = \dfrac{{{{\left( {3\ln 2 + 2} \right)}^5}}}{{15}} + C.\end{array}\)
Chọn đáp án B.
Phương trình \({z^2} + 4z + 13 = 0\)có các nghiệm là;
\(\begin{array}{l}{z^2} + 4z + 13 = 0\\ \Leftrightarrow \left( {{z^2} + 4z + 4} \right) + 9 = 0\\ \Leftrightarrow {\left( {z + 2} \right)^2} = - 9\\ \Rightarrow {\left( {z + 2} \right)^2} = 9{i^2}\\ \Rightarrow \left[ \begin{array}{l}z + 2 = 3i\\z + 2 = - 3i\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}z = - 2 + 3i\\z = - 2 - 3i\end{array} \right.\end{array}\)
Phép dời hình biến đường thẳng thành:
Phép dời hình biến đường thẳng thành đường thẳng.
Chọn D.
Chú ý khi giải:
Một số em sẽ chọn đáp án C vì không đọc kỹ đáp án.
Trong các kí hiệu sau, kí hiệu nào không phải của khối đa diện đều?
Có 5 khối đa diện, đó các loại \(\left\{ {3;3} \right\},\left\{ {4;3} \right\},\left\{ {3;4} \right\},\left\{ {5;3} \right\},\left\{ {3;5} \right\}\)
Vậy kí hiệu \(\left\{ {4;4} \right\}\) không phải kí hiệu của khối đa diện đều nào cả.
Chọn D.
Cho hình nón có thiết diện qua trục là một tam giác đều. Khai triển hình nón theo một đường sinh, ta được một hình quạt tròn có góc ở tâm là \(\alpha \). Trong các kết luận sau, kết luận nào đúng ?
Gọi hình nón có bán kính đáy là r
Đọ dài đường sinh là \(l = 2r\)
Khi đó, khai triển hình nón theo đường sinh ta được hình quạt có bán kính \(R = l = 2r\) và độ dài cung tròn là: \(L = C = 2\pi r\)
Mặt khác: \(L = \alpha R \Rightarrow \alpha = \dfrac{{2\pi r}}{{2r}} = \pi \)
Chọn D.
Trong không gian với hệ trục toạ độ \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 9\), điểm \(A\left( {0;0;2} \right)\). Phương trình mặt phẳng \(\left( P \right)\) đi qua \(A\) và cắt mặt cầu \(\left( S \right)\) theo thiết diện là hình tròn \(\left( C \right)\)có diện tích nhỏ nhất ?
Mặt cầu \(\left( S \right)\) có tâm \(I\left( {1,2,3} \right),R = 3\).
Ta có \(IA < R\) nên điểm \(A\)nằm trong mặt cầu.
Ta có : \(d\left( {I,\left( P \right)} \right) = \sqrt {{R^2} - {r^2}} \)
Diện tích hình tròn \(\left( C \right)\) nhỏ nhất \( \Leftrightarrow \)\(r\)nhỏ nhất \( \Leftrightarrow d\left( {I,\left( P \right)} \right)\) lớn nhất.
Do \(d\left( {I,\left( P \right)} \right) \le IA\)\( \Rightarrow \max d\left( {I,\left( P \right)} \right) = IA\) Khi đó mặt phẳng\(\left( P \right)\) đi qua \(A\) và nhận \(\overrightarrow {IA} \) làm vtpt
\( \Rightarrow \left( P \right):x + 2y + z - 2 = 0\)
Nếu \(P = {S \over {{{(1 + k)}^n}}}\) thì n bằng:
Ta có: \(P = \dfrac{S}{{{{(1 + k)}^n}}} \)
\(\Rightarrow {(1 + k)^n} = \dfrac{S}{P}\)
\(\Leftrightarrow n = {\log _{k + 1}}\left( {\dfrac{S}{P}} \right) = \dfrac{{\log \dfrac{S}{P}}}{{\log (1 + k)}}\)
Chọn đáp án A
Viết các số theo thứ tự tăng dần: \({\left( {{1 \over 3}} \right)^0}\,,\,\,{\left( {{1 \over 3}} \right)^{ - 1}},\,\,{\left( {{1 \over 3}} \right)^\pi },\,\,{\left( {{1 \over 3}} \right)^{\sqrt 2 }}\).
Thứ tự tăng dần là \({\left( {\dfrac{1}{3}} \right)^\pi },\,\,{\left( {\dfrac{1}{3}} \right)^{\sqrt 2 }},\,{\left( {\dfrac{1}{3}} \right)^0},\,\,{\left( {\dfrac{1}{3}} \right)^{ - 1}}\)
Chọn đáp án A.
Diện tích hình phẳng giới hạn bởi \(y = \left( {e + 1} \right)x\,,\,\,y = \left( {{e^x} + 1} \right)x\) là:
Phương trình hoành độ giao điểm là: \(\left( {e + 1} \right)x\, = \left( {{e^x} + 1} \right)x \)
\(\Leftrightarrow x\left( {{e^x} + 1 - e - 1} \right) = 0\)
\( \Leftrightarrow x\left( {{e^x} - e} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\end{array} \right.\).
Khi đó, diện tích hình phẳng được giới hạn bởi hai đồ thị là:
\(\begin{array}{l}S = \int\limits_0^1 {\left| {\left( {{e^x} + 1} \right)x - \left( {e + 1} \right)x} \right|\,dx} \\\,\,\,\, = \int\limits_0^1 {\left| {{e^x}x - ex} \right|\,dx} = \int\limits_0^1 {\left( {ex - {e^x}x} \right)} \,dx\\\,\,\,\, = \left( {\dfrac{{e{x^2}}}{2}} \right)\left| \begin{array}{l}^1\\_0\end{array} \right. - \int\limits_0^1 {{e^x}xdx} \end{array}\)
Đặt \(I = \int\limits_0^1 {{e^x}x\,dx} \)
Ta có: \(\begin{array}{l}I = \int\limits_0^1 {{e^x}x\,dx} = \int\limits_0^1 {x\,d\left( {{e^x}} \right)} \\\,\,\, = \left( {x.{e^x}} \right)\left| {_0^1} \right. - \int\limits_0^1 {{e^x}} dx\\\,\,\, = e - \left( {{e^x}} \right)\left| {_0^1} \right. = e - \left( {e - 1} \right) = 1\end{array}\)
Khi đó: \(S = \dfrac{e}{2} - 1 = \dfrac{{e - 2}}{2}.\)
Chọn đáp án C.
Xét f(x) là một hàm số liên tục trê đoạn [a ; b], ( với a < b) và F(x) là một nguyên hàm của hàm số f(x) trên đoạn [a ; b]. Mệnh đề nào dưới đây đúng ?
Áp dụng khái niệm của tích phân: Xét \(f\left( x \right)\) là một hàm số liên tục trê đoạn \(\left[ {a;b} \right]\), ( với \(a < b\)) và \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {a;b} \right]\) ta có\(\int\limits_a^b f (x)\,dx = F(b) - F(a)\).
Chọn đáp án D.
Cho đồ thị (C): \(y = {x^4} - 2{x^2}\). Khẳng định nào sau đây là sai ?
Cho x=0 thì y=0 nên đồ thị hàm số chỉ cắt trục Oy tại 1 điểm duy nhất.
Cho hình trụ \(\left( H \right)\) có hai đáy là hai đường tròn \(\left( {O;\,r} \right)\) và \(\left( {O';\,r} \right)\). Hình nón \(\left( N \right)\) có đỉnh là \(O\) và đáy của hình nón là đường tròn \(\left( {O';\,r} \right)\). Lúc đó, tỉ số thể tích của khối trụ \(\left( H \right)\) và khối nón \(\left( N \right)\) bằng
Ta có thể tích của khối trụ (H) là: \({V_1} = S.h\)
Thể tích của khối nón (N) là: \({V_2} = \dfrac{1}{3}S.h\)
\( \Rightarrow \dfrac{{{V_1}}}{{{V_2}}} = 3\) . Chọn B.
Trong không gian với hệ toạ độ \(Oxyz\), cho điểm \(N\left( {1;1;1} \right)\). Viết phương trình mặt phẳng \(\left( P \right)\) cắt các trục \(Ox,Oy,Oz\) lần lượt tại \(A,B,C\) (không trùng với gốc tọa độ\(O\)) sao cho \(N\) là tâm đường tròn ngoại tiếp tam giác \(ABC\)
Gọi \(A\left( {a;0;0} \right),B\left( {0;b;0} \right),C\left( {0;0;c} \right)\) lần lượt là giao điểm của \(\left( P \right)\) với các trục \(Ox,Oy,Oz\)
\( \Rightarrow \)\(\left( P \right):\dfrac{x}{a} + \dfrac{y}{b} + \dfrac{z}{c} = 1\left( {a,b,c \ne 0} \right)\)
Ta có: \(\left\{ {\begin{array}{*{20}{c}}{N \in \left( P \right)}\\{NA = NB}\\{NA = NC}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c} = 1}\\{\left| {a - 1} \right| = \left| {b - 1} \right|}\\{\left| {a - 1} \right| = \left| {c - 1} \right|}\end{array}} \right. \)
\(\Leftrightarrow a = b = c = 3 \Rightarrow x + y + z - 3 = 0\)
Cho \(f(x) = \dfrac{{4m}}{\pi } + {\sin ^2}x\). Tìmmđể nguyên hàm F(x) của hàm số f(x) thỏa mãn F(0) = 1 và \(F\left( {\dfrac{\pi }{4}} \right) = \dfrac{\pi }{8}\).
Ta có:
\(\int {\left( {\dfrac{{4m}}{\pi } + {{\sin }^2}x} \right)\,dx} \)
\(= \int {\left( {\dfrac{{4m}}{\pi } + \dfrac{{1 - \cos 2x}}{2}} \right)} \,dx \)
\(= \int {\left( {\dfrac{{8m + \pi }}{{2\pi }} - \dfrac{{\cos 2x}}{2}} \right)\,dx} \)
\( = \left( {\dfrac{{8m + \pi }}{{2\pi }}} \right)x - \dfrac{1}{4}\int {\cos 2x\,d\left( {2x} \right)}\)
\( = \left( {\dfrac{{8m + \pi }}{{2\pi }}} \right)x - \dfrac{{\sin 2x}}{4} + C\)
Theo giả thiết ta có:
+ \(F\left( 0 \right) = 1 \Rightarrow C = 1\)
+ \(F\left( {\dfrac{\pi }{4}} \right) = \dfrac{\pi }{8}\)
\(\Rightarrow \left( {\dfrac{{8m + \pi }}{{2\pi }}} \right).\dfrac{\pi }{4} - \dfrac{1}{4} + 1 = \dfrac{\pi }{8}\)
\( \Leftrightarrow \dfrac{{8m + \pi }}{8} = \dfrac{\pi }{8} - \dfrac{3}{4} = \dfrac{{\pi - 6}}{8} \)
\(\Leftrightarrow 8m = - 6 \Rightarrow m = - \dfrac{3}{4}\).
Chọn đáp án A.
Cho hàm số \(y = {x^2}{e^{ - x}}\). Khẳng định nào sau đây là đúng ?
Ta có: \(y = {x^2}{e^{ - x}}\)
\(\Rightarrow y' = {\left( {{x^2}{e^{ - x}}} \right)^\prime }\)\(\, = 2x{e^{ - x}} - {x^2}{e^{ - x}}\)
\(y' = 0 \Leftrightarrow x{e^{ - x}}\left( {2 - x} \right) = 0\)
\(\Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\)
+ Hàm số có \(x = 0\) là điểm cực tiểu, \(x = 2\) là điểm cực đại.
Chọn đáp án D.
Cho hàm số f(x) có đạo hàm trên R. Nếu hàm số f(x) đồng biến trên R thì
Nếu hàm số f(x) đồng biến trên R thì f'(x) \(\ge 0\) trên R.
Cho đồ thị (C): \(y = \dfrac{{4x - 1} }{{x + 1}}\). Tọa độ tâm đối xứng của (C) là
\(y = \dfrac{{4x - 1}}{{x + 1}}\)
TXĐ: D=R\{1}
\(\mathop {\lim }\limits_{x \to \pm \infty } \dfrac{{4x - 1}}{{x + 1}} = 4\) nên TCN: y=4
\(\left. \begin{array}{l}\mathop {\lim }\limits_{x \to {{( - 1)}^ + }} \dfrac{{4x - 1}}{{x + 1}} = + \infty \\\mathop {\lim }\limits_{x \to {{( - 1)}^ - }} \dfrac{{4x - 1}}{{x + 1}} = - \infty \end{array} \right\} \)\(\,\Rightarrow TCĐ: x= -1\)
\( \Rightarrow \) tâm đối xứng I(-1,4)
Khối đa diện đều có 20 mặt thì có bao nhiêu cạnh?
Khối đa diện mười hai mặt đều thuộc loại \(\left\{ {3;5} \right\}\) nên mỗi mặt có 3 cạnh
Mỗi cạnh là cạnh chung của 2 mặt nên tổng số cạnh của đa diện là \(20.3:2 = 30\) (cạnh)
Chọn C.
Chú ý khi giải:
Một số em sẽ chọn nhầm đáp án D vì quên không chia cho 2 (mỗi cạnh lặp lại 2 lần).
Một hình thang vuông \(ABCD\) có đường cao \(AD = a\), đáy lớn \(CD = 2a\). Cho hình thang đó quay quanh \(CD\), ta được khối tròn xoay có thể tích bằng
Thể tich khối tròn xoay tạo ra khi quay hình thang ABCD quanh trục CD là:
\(V = \dfrac{1}{3}a.\pi {a^2} + a.\pi {a^2} = \dfrac{4}{3}\pi {a^3}\)
Chọn A.
Trong không gian với hệ toạ độ \(Oxyz\), viết phương trình mặt phẳng \(\left( P \right)\) đi qua hai điểm \(A(1;1;1)\), \(B\left( {0;2;2} \right)\) đồng thời cắt các tia \(Ox,Oy\) lần lượt tại hai điểm \(M,N\) (không trùng với gốc tọa độ\(O\)) sao cho \(OM = 2ON\)
Gọi \(M\left( {a;0;0} \right),N\left( {0;b;0} \right)\) lần lượt là giao điểm của \(\left( P \right)\) với các tia \(Ox,Oy\)\(\left( {a,b > 0} \right)\)
Do \(OM = 2ON\)\( \Leftrightarrow a = 2b\)\( \Rightarrow \overrightarrow {MN} \left( { - 2b;b;0} \right) = - b\left( {2; - 1;0} \right)\) .Đặt \(\overrightarrow u \left( {2; - 1;0} \right)\)
Gọi \(\overrightarrow n \) là môt vectơ pháp tuyến của mặt phẳng \(\left( P \right)\)\( \Rightarrow \)\(\overrightarrow n = \left[ {\overrightarrow u ,\overrightarrow {AB} } \right] = \left( { - 1;2;1} \right)\)
Phương trình măt phẳng \(\left( P \right):x - 2y - z + 2 = 0\).
Cho hàm số y = f(x) có đạo hàm trên (a ; b). Nếu f’(x) đổi dấu từ âm sang dương qua điểm x0 thì
Nếu f’(x) đổi dấu từ âm sang dương qua điểm x0 thì x0 là điểm cực tiểu của hàm số.
Cho phương trình \({5^{x - 1}} = {\left( {{1 \over {25}}} \right)^x}\). Nghiệm của phương trình này nằm trong khoảng nào dưới đây ?
Ta có: \({5^{x - 1}} = {\left( {\dfrac{1}{{25}}} \right)^x} \)
\(\Leftrightarrow {5^{x - 1}} = 5{}^{ - 2x} \)
\(\Leftrightarrow x - 1 = - 2x\)
\(\Leftrightarrow x = \dfrac{1}{3}.\)
Chọn đáp án A.
Cho hình chóp tứ giác đều \(S.ABCD\) có chiều cao h, góc ở đỉnh của mặt bên bằng \({60^0}\). Thể tích hình chóp là:
Gọi \(O = AC \cap BD\).
Vì chóp \(S.ABCD\) đều nên \(SO \bot \left( {ABCD} \right)\)
Đặt \(SA = SB = SC = SD = a\)
Tam giác \(SCD\) có:\(SC = SD;\widehat {CSD} = {60^0} \Rightarrow \Delta SCD\)đều\( \Rightarrow CD = SC = SD = a\)
\( \Rightarrow \) Hình vuông \(ABCD\) cạnh \(a \Rightarrow AC = BD = a\sqrt 2 \)\( \Rightarrow OC = \dfrac{1}{2}AC = \dfrac{{a\sqrt 2 }}{2}\)
\(SO \bot \left( {ABCD} \right) \Rightarrow SO \bot OC \Rightarrow \Delta SOC\) vuông tại O
\( \Rightarrow SO = \sqrt {S{C^2} - O{C^2}} \)
\(\Rightarrow h = \sqrt {{a^2} - \dfrac{{{a^2}}}{2}} = \dfrac{{a\sqrt 2 }}{2}\) \( \Rightarrow a = h\sqrt 2 \)
\( \Rightarrow {S_{ABCD}} = {a^2} = {\left( {h\sqrt 2 } \right)^2} = 2{h^2}\)
Vậy \({V_{S.ABCD}} = \dfrac{1}{3}SO.{S_{ABCD}} = \dfrac{1}{3}h.2{h^2} = \dfrac{{2{h^3}}}{3}\)
Chọn C.