Trong không gian với hệ trục tọa độ \(Oxyz\), gọi \((P)\)là mặt phẳng song song với mặt phẳng \(Oxz\) và cắt mặt cầu \({(x - 1)^2} + {(y + 2)^2} + {z^2} = 12\)theo đường tròn có chu vi lớn nhất. Phương trình của \((P)\) là:
A. \(x - 2y + 1 = 0\).
B. \(y - 2 = 0\).
C. \(y + 1 = 0\).
D. \(y + 2 = 0\).
Lời giải của giáo viên
Phương pháp tự luận
Mặt phẳng \((P)\) cắt mặt cầu \({(x - 1)^2} + {(y + 2)^2} + {z^2} = 12\) theo đường tròn có chu vi lớn nhất nên mặt phẳng \((P)\) đi qua tâm \(I(1; - 2;0)\).
Phương trình mặt phẳng \((P)\) song song với mặt phẳng \(Oxz\) có dạng :\(Ay + B = 0\)
Do \((P)\) đi qua tâm \(I(1; - 2;0)\)có phương trình dạng: \(y + 2 = 0\).
Phương pháp trắc nghiệm
+) Mặt phẳng \((P)\) song song với mặt phẳng \(Oxz\) nên lọai đáp án D.
+) Mặt phẳng \((P)\)đi qua tâm \(I(1; - 2;0)\)nên thay tọa độ điểm \(I\)vào các phương trình loại được đáp án B,C.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số f(x) có đạo hàm trên R. Nếu hàm số f(x) đồng biến trên R thì
Xét f(x) là một hàm số liên tục trê đoạn [a ; b], ( với a < b) và F(x) là một nguyên hàm của hàm số f(x) trên đoạn [a ; b]. Mệnh đề nào dưới đây đúng ?
Phép đối xứng qua mặt phẳng biến một điểm thuộc mặt phẳng đó thành:
Cho hàm số y = f(x) có bảng biến thiên như sau:
Khẳng định nào sau đây đúng ?
Viết các số theo thứ tự tăng dần: \({\left( {{1 \over 3}} \right)^0}\,,\,\,{\left( {{1 \over 3}} \right)^{ - 1}},\,\,{\left( {{1 \over 3}} \right)^\pi },\,\,{\left( {{1 \over 3}} \right)^{\sqrt 2 }}\).
Trong không gian với hệ trục toạ độ \(Oxyz\), cho mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 9\), điểm \(A\left( {0;0;2} \right)\). Phương trình mặt phẳng \(\left( P \right)\) đi qua \(A\) và cắt mặt cầu \(\left( S \right)\) theo thiết diện là hình tròn \(\left( C \right)\)có diện tích nhỏ nhất ?
Hàm số y = sinx là một nguyên hàm của hàm số nào sau đây ?
Tìm \(I = \int {\left( {2{x^2} - \dfrac{1}{{\sqrt[3]{x}}} - \dfrac{1}{{{{\cos }^2}x}}} \right)\,dx} \) trên khoảng \(\left( {0;\dfrac{\pi }{2}} \right)\).
Trong không gian với hệ trục tọa độ \(Oxyz\), cho điểm \(M(1;2;3).\) Gọi \((\alpha )\) là mặt phẳng chứa trục \(Oy\) và cách \(M\) một khoảng lớn nhất. Phương trình của \((\alpha )\) là:
Tích của hai số phức \({z_1} = 3 + 2i\,,\,\,{z_2} = 2 - 3i\) là;
Cho a, b là các số thực dương, thỏa mãn \({a^{{3 \over 4}}} > {a^{{4 \over 5}\,\,\,}}\,\,,\,\,\,{\log _b}{1 \over 2} < {\log _b}{2 \over 3}\). Mệnh đề nào sau đây đúng ?
Họ nguyên hàm của hàm số \(f(x) = \dfrac{{\sin x}}{{{{\cos }^2}x}}\) là