Xét hai số phức \({{z}_{1}},{{z}_{2}}\) thỏa mãn \(\left| {{z}_{1}} \right|=1,\left| {{z}_{2}} \right|=2\) và \(\left| {{z}_{1}}-{{z}_{2}} \right|=\sqrt{3}.\) Giá trị lớn nhất của \(\left| 3{{z}_{1}}+{{z}_{2}}-5i \right|\) bằng
A. \(5-\sqrt{19}\)
B. \(5+\sqrt{19}\)
C. \(-5+2\sqrt{19}\)
D. \(5+2\sqrt{19}\)
Lời giải của giáo viên
Gọi A,B lần lượt là các điểm biểu diễn số phức \({{z}_{1}},{{z}_{2}}\)
Vì \(\left| {{z}_{1}} \right|=1\) nên tập hợp các điểm M là đường tròn tâm O bán kính \({{R}_{1}}=1\Rightarrow OM=1.\)
Vì \(\left| {{z}_{2}} \right|=2\) nên tập hợp các điểm N là đường tròn tâm O bán kính \({{R}_{2}}=2\Rightarrow ON=2.\)
Vì \(\left| {{z}_{1}}-{{z}_{2}} \right|=\sqrt{3}\) nên \(MN=\sqrt{3}.\)
Đặt \({{z}_{3}}=3{{z}_{1}}+{{z}_{2}}\) là gọi P là điểm biểu diễn số phức \({{z}_{3}},\) khi đó ta có \(\overrightarrow{OP}=3\overrightarrow{OM}+\overrightarrow{ON}=\overrightarrow{OM'}+\overrightarrow{ON}.\)
\(\Rightarrow OM'PN\) là hình bình hàng.
Khi đó \(O{{P}^{2}}=OM{{'}^{2}}+O{{N}^{2}}+2OM'.ON.\cos \angle M'ON.\)
Lại có \(\Delta OMN\) vuông tại M (định lý Pytago đảo) \(\Rightarrow c\text{os}\angle \text{MON =}\frac{OM}{ON}=\frac{1}{2}.\)
\(\Rightarrow O{{P}^{2}}=OM{{'}^{2}}+O{{N}^{2}}+2OM'.ON.c\text{os}\angle \text{M }\!\!'\!\!\text{ ON}\)
\(={{3}^{2}}+{{2}^{2}}+2.3.2.\frac{1}{2}=19\)
\(\Rightarrow OP=\sqrt{19}\)
Gọi \(Q\left( 0;-5 \right)\) là điểm biểu diễn số phức 5i, khi đó ta có \(\left| 3{{z}_{1}}+{{z}_{2}}-5i \right|=PQ.\)
Do đó \({{\left| 3{{z}_{1}}+{{z}_{2}}-5i \right|}_{max}}=P{{Q}_{_{max}}}.\)
Áp dụng BĐT tam giác có \(PQ\le OP+OQ=\sqrt{19}+5.\)
\(\Rightarrow P{{Q}_{max}}=5+\sqrt{19}.\) Dấu ''='' xảy ả khi P,O,Q thẳng hàng.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f\left( x \right)\) có bảng xét dấu của đạo hàm \(f'\left( x \right)\) như sau:
Hàm số \(f\left( x \right)\) có bao nhiêu điểm cực trị?
Trong không gian Oxyz, cho hai điểm \(A\left( 2;1;3 \right)\) và \(B\left( 6;5;5 \right).\) Xét khối nón \(\left( N \right)\) có đỉnh A, đường tròn đáy nằm trên mặt cầu đường kính AB. Khi \(\left( N \right)\) có thể tích lớn nhất thì mặt phẳng chứa đường tròn đáy của \(\left( N \right)\) có phương trình dạng 2x+by+cz+d=0. Giá trị của b+c+d bằng
Gọi M,m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(f\left( x \right)={{x}^{4}}-2{{x}^{2}}+3\) trên đoạn \(\left[ 0;2 \right].\) Tổng M+m bằng
Nếu \(\int\limits_{1}^{2}{f\left( x \right)dx=5}\) và \(\int\limits_{2}^{3}{f\left( x \right)dx=-2}\) thì \(\int\limits_{1}^{3}{f\left( x \right)dx}\) bằng
Với a là số thực dương tùy ý, \({{\log }_{3}}\left( 9a \right)\) bằng
Với a là số thực dương tùy ý, \(\sqrt{{{a}^{3}}}\) bằng
Cho hàm số \(f\left( x \right)\) có bảng biến thiên như sau:
Hàm số đã cho đồng biến trên khoảng nào, trong các khoảng dưới đây?
Trong không gian Oxyz, mặt cầu có tâm là gốc tọa độ O và đi qua điểm \(M\left( 0;0;2 \right)\) có phương trình là:
Nghiệm của phương trình \({{\log }_{2}}\left( 3x \right)=3\) là:
Trong không gian Oxyz, cho hai điểm \(A\left( 1;1;2 \right)\) và \(B\left( 3;1;0 \right).\) Trung điểm của đoạn thẳng AB có tọa độ là
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
Một khối chóp có diện tích đáy bằng 6 và chiều cao bằng 5. Thể tích của khối chóp bằng