Xét số phức z thỏa mãn \(\left( {1 + 2i} \right)\left| z \right| = \frac{{\sqrt {10} }}{z} - 2 + i.\) Mệnh đề nào dưới đây đúng ?
A. \(\frac{3}{2} < \left| z \right| < 2.\)
B. \(\left| z \right| > 2.\)
C. \(\left| z \right| < \frac{1}{2}.\)
D. \(\frac{1}{2} < \left| z \right| < \frac{3}{2}.\)
Lời giải của giáo viên
Ta có \({z^{ - 1}} = \frac{1}{{{{\left| z \right|}^2}}}\overline z .\)
Vậy \(\left( {1 + 2i} \right)\left| z \right| = \frac{{\sqrt {10} }}{z} - 2 + i \Leftrightarrow \left( {\left| z \right| + 2} \right) + \left( {2\left| z \right| - 1} \right)i = \left( {\frac{{\sqrt {10} }}{{{{\left| z \right|}^2}}}} \right).\overline z \)
\( \Rightarrow {\left( {\left| z \right| + 2} \right)^2} + {\left( {2\left| z \right| - 1} \right)^2} = \left( {\frac{{10}}{{{{\left| z \right|}^4}}}} \right).{\left| z \right|^2} = \frac{{10}}{{{{\left| z \right|}^2}}}.\) Đặt \(\left| z \right| = a > 0.\)
\( \Rightarrow {\left( {a + 2} \right)^2} + {\left( {2a - 1} \right)^2} = \left( {\frac{{10}}{{{a^2}}}} \right) \Leftrightarrow {a^4} + {a^2} - 2 = 0 \Leftrightarrow \left[ \begin{array}{l}
{a^2} = 1\\
{a^2} = - 2
\end{array} \right. \Rightarrow a = 1 \Rightarrow \left| z \right| = 1.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho các số phức z, w thỏa mãn \(\left| {z + 2 - 2i} \right| = \left| {z - 4i} \right|,w = iz + 1\). Giá trị nhỏ nhất của \(\left| w \right|\) là
Trong mặt phẳng Oxy, tập hợp điểm biểu diễn số phức z thỏa mãn \(\left| {z - 1} \right| = \left| {\left( {1 + i} \right)z} \right|\) là
Trong số các số phức z thỏa mãn điều kiện \(\left| {z - 4 + 3i} \right| = 3,\) gọi \(z_0\) là số phức có mô đun lớn nhất. Khi đó \(\left| {{z_0}} \right|\) là:
Trên mặt phẳng phức, cho điểm A biểu diễn số phức \(3-2i\), điểm B biểu diễn số phức \(-1+6i\). Gọi M là trung điểm của AB. Khi đó điểm M biểu diễn số phức nào sau đây?
Cho số phức \(z=a+bi\) với \(a, b\) là hai số thực khác 0. Một phương trình bậc hai với hệ số thực nhận \(\bar z\) làm nghiệm với mọi \(a, b\) là:
Cho số phức z thỏa mãn \(3iz + 3 + 4i = 4z\). Tính môđun của số phức \(3z+4\)
Cho hai số phức \({z_1} = 1 - i\) và \({z_2} = 2 + 3i\). Tính môđun của số phức \({z_2} - i{z_1}\).
Gọi \(z_1, z_2\) là hai nghiệm phức của phương trình: \({z^2} - z + 2 = 0\). Phần thực của số phức \({\left[ {\left( {i - {z_1}} \right)\left( {i - {z_2}} \right)} \right]^{2017}}\) là
Cho số phức z thỏa mãn: \(\left| {z - 2 - 2i} \right| = 1\). Số phức \(z-i\) có môđun nhỏ nhất là:
Cho z là số phức thỏa mãn \(z + \frac{1}{z} = 1.\) Tính giá trị của \({z^{2017}} + \frac{1}{{{z^{2017}}}}.\)
Tìm số phức liên hợp của số phức \(z = i\left( {3i + 1} \right)\).
Cho số phức \(z = \frac{{ - 1}}{2} + \frac{{\sqrt 3 }}{2}i\). Số phức \(1 + z + {z^2}\) bằng
Cho số phức z thỏa mãn \(\left| z \right| \le 1\). Đặt \(A = \frac{{2z - i}}{{2 + iz}}\). Mệnh đề nào sau đây đúng?
Tính môđun của số phức z thỏa mãn \(z\left( {2 - i} \right) + 13i = 1\).
Với các số phức z thỏa mãn \(|z - 2 + i| = 4\), tập hợp các điểm biểu diễn các số phức z là một đường tròn. Tìm bán kính R đường tròn đó