Xét tập hợp các khối nón tròn xoay có cùng góc ở đỉnh \(2\beta ={{90}^{0}}\) và có độ dài đường sinh bằng nhau. Có thể sắp xếp được tối đa bao nhiêu khối nón thỏa mãn cứ hai khối nón bất kì thì chúng chỉ có đỉnh chung hoặc ngoài đỉnh chung đó ra chính có thể có chung một đường sinh duy nhất?
A. 4
B. 6
C. 8
D. 10
Lời giải của giáo viên
Khi sắp 2 hình nón thỏa mãn điều kiện ban đầu có chung 1 đường sinh và đỉnh chung. Khi đó hai
hình nón đã cho có đáy nằm trên hai mặt phẳng vuông góc với nhau.
Vậy sẽ sắp xếp được tối đa sáu hình nón thỏa mãn điều kiện ban đầu các các khối nón có đỉnh nằm
tại tâm của hình lập phương và các mặt đáy của hình nón nội tiếp sáu mặt của hình lập phương.
CÂU HỎI CÙNG CHỦ ĐỀ
Với \(a\) là số thực dương, \(\ln \left( 7a \right)-\ln \left( 3a \right)\) bằng
Cho tứ diện \(ABCD\) có các cạnh \(AB,AC\) và \(AD\) đôi một vuông góc. Các điểm \(M,N,P\) lần lượt là trung điểm của các đoạn thẳng \(BC,CD,BD. \) Biết rằng \(AB=4a;AC=6a;AD=7a. \) Thể tích \(V\) của khối tứ diện \(AMNP\) bằng
Số đường tiệm cận ngang của đồ thị hàm số \(y=\frac{\sqrt{10000-{{x}^{2}}}}{x-2}\) là
Cho khối trụ tròn xoay có bán kính đường tròn đáy \(R=4a. \) Hai điểm \(A\) và \(B\) di động trên hai đường tròn đáy của khối trụ. Tính thể tích \(V\) của khối trụ tròn xoay đó biết rằng độ dài lớn nhất của đoạn \(AB\) là \(10a. \)
Cho hàm số \(y=\sqrt{{{x}^{3}}-3x}. \) Nhận định nào dưới đây là đúng?
Trong khai triển \({{\left( xy-\frac{3}{{{y}^{4}}} \right)}^{12}}\) hệ só của số hạng có số mũ của \(x\) gấp 5 lần số mũ của \(y\) là
Cho hàm số \(y=\frac{x-2}{x-m}\) nghịch biến trên khoảng \(\left( -\infty ;3 \right)\) khi:
Cho lăng trụ tam giác \(ABC.A'B'C'\) có đáy là tam giác đều cạnh \(2a. \) Biết \(A'\) cách đều ba đỉnh \(A,B,C\) và mặt phẳng \(\left( A'BC \right)\) vuông góc với mặt phẳng \(\left( AB'C' \right). \) Thể tích của khối lăng trụ \(ABC.A'B'C'\) tính theo \(a\) bằng
Số giá trị nguyên của tham số \(m\) để hàm số \(y=m{{x}^{4}}-\left( m-3 \right){{x}^{2}}+{{m}^{2}}\) không có điểm cực đại là
Cho hàm số \(y=f\left( x \right)=a{{x}^{3}}+b{{x}^{2}}+cx+d\) có đồ thị như hình vẽ.
Khi đó phương trình \(f\left( {{f}^{2}}\left( x \right) \right)=1\) có bao nhiêu nghiệm?
Cho hàm số \(y=f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và đồ thị hàm số \(y=f'\left( x \right)\) như hình bên. Khẳng định nào sau đây là đúng?
Đường cong ở hình bên là đồ thị của hàm số nào sau đây?
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như sau.
Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số \(g\left( x \right)=\frac{1}{2f\left( x \right)-1}\) là
Số điểm cực trị của đồ thị hàm số \(y=-{{x}^{3}}+1\) là