Đề thi thử THPT QG năm 2022 môn Toán - Trường THPT Đa Phước
Đề thi thử THPT QG năm 2022 môn Toán
-
Hocon247
-
50 câu hỏi
-
90 phút
-
75 lượt thi
-
Dễ
Tham gia [ Hs Hocon247.com ] - Cộng Đồng Luyện Thi Trực Tuyến để được học tập những kiến thức bổ ích từ HocOn247.com
Cho a là số thực dương khác 2 .Tính \(I = {\log _{\dfrac{a}{2}}}\left( {\dfrac{{{a^2}}}{4}} \right)\).
\(I = {\log _{\dfrac{a}{2}}}\left( {\dfrac{{{a^2}}}{4}} \right) = {\log _{\dfrac{a}{2}}}{\left( {\dfrac{a}{2}} \right)^2} = 2{\log _{\dfrac{a}{2}}}\left( {\dfrac{a}{2}} \right) = 2.1 = 2\) với \(\left( {a > 0,a \ne 2} \right)\).
Chọn: A
Biết rằng bất phương trình \({\log _2}\left( {{5^x} + 2} \right) + 2.{\log _{\left( {{5^x} + 2} \right)}}2 > 3\) có tập nghiệm là \(S = \left( {{{\log }_a}b; + \infty } \right)\), với \(a\), \(b\) là các số nguyên dương nhỏ hơn 6 và \(a\not = 1\). Tính \(P = 2a + 3b\).
Ta có:
\({\log _2}\left( {{5^x} + 2} \right) + 2.{\log _{\left( {{5^x} + 2} \right)}}2 > 3 \Leftrightarrow {\log _2}\left( {{5^x} + 2} \right) + \dfrac{2}{{{{\log }_2}\left( {{5^x} + 2} \right)}} > 3\) (1)
Đặt \({\log _2}\left( {{5^x} + 2} \right) = t,\,\left( {t \ne 0} \right)\). Ta có \({5^x} + 2 > 2 \Rightarrow {\log _2}\left( {{5^x} + 2} \right) > {\log _2}2 = 1 \Rightarrow t > 1\)
Khi đó, (1) trở thành: \(t + \dfrac{2}{t} > 3 \Leftrightarrow \dfrac{{{t^2} - 3t + 2}}{t} > 0\)
Ta có bảng xét dấu sau:
Từ BBT kết hợp điều kiện của \(t\) ta có:
\( \Rightarrow t > 2 \Rightarrow {\log _2}\left( {{5^x} + 2} \right) > 2\,\, \Leftrightarrow {5^x} + 2 > 4 \Leftrightarrow {5^x} > 2 \Leftrightarrow x > {\log _5}2\)
Vậy tập nghiệm của (1) là \(S = \left( {{{\log }_5}2; + \infty } \right)\,\, \Rightarrow a = 5,\,\,b = 2 \Rightarrow P = 2a + 3b = 16\).
Chọn: D
Ông Chính gửi 200 triệu đồng vào một ngân hàng với lãi suất 7%/năm. Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào gốc để tính lãi cho năm tiếp theo và từ năm thứ hai trở đi, mỗi năm ông gửi thêm vào tài khoản với số tiền 20 triệu đồng. Hỏi sau 18 năm số tiền ông Chính nhận được cả gốc lẫn lãi là bao nhiêu? Giả định trong suốt thời gian gửi lãi suất không thay đổi và ông Chính không rút tiền ra (kết quả được làm tròn đến hàng nghìn).
Sau 18 năm số tiền ông Chính nhận được cả gốc lẫn lãi là:
\({A_{18}} = 200{(1 + 7\% )^{18}} + 20{(1 + 7\% )^{17}} \approx \)\(739,163\) (triệu đồng).
Chọn: C
Cho hình chóp S.ABCD có đáy là hình vuông cạnh \(a,\)đường cao \(SA = x.\) Góc giữa \(\left( {SBC} \right)\) và mặt đáy bằng \({60^0}\). Khi đó \(x\) bằng
Ta có: \(\left( {SBC} \right) \cap \left( {ABCD} \right) = BC\)
Mà \(\left( {SAB} \right) \bot BC\), (do \(AB \bot BC,\,\,SA \bot BC\))
\(\left( {SBC} \right) \cap \left( {SAB} \right) = SB,\,\,\left( {ABCD} \right) \cap \left( {SAB} \right) = AB \Rightarrow \)\(\widehat {\left( {\left( {SBC} \right);\left( {ABCD} \right)} \right)} = \widehat {\left( {SB;AB} \right)} = \widehat {SBA} = {60^0}\)
\(\Delta SAB\) vuông tại A \( \Rightarrow SA = AB\tan \widehat {SBA} = a.\tan {60^0} = a\sqrt 3 \)
Vậy \(x = a\sqrt 3 .\)
Chọn: B
Tính tổng các hệ số trong khai triển \({\left( {1 - 2x} \right)^{2019}}\).
Ta có: \({\left( {1 - 2x} \right)^{2019}} = \sum\limits_{i = 0}^{2019} {C_{2019}^i{{\left( { - 2x} \right)}^i}} = \sum\limits_{i = 0}^{2019} {C_{2019}^i{{\left( { - 2} \right)}^i}{x^i}} \)
Tổng các hệ số trong khai triển \({\left( {1 - 2x} \right)^{2019}}\) là: \(\sum\limits_{i = 0}^{2019} {C_{2019}^i{{\left( { - 2} \right)}^i}} \)
Cho \(x = 1 \Rightarrow {\left( {1 - 2.1} \right)^{2019}} = \sum\limits_{i = 0}^{2019} {C_{2019}^i{{\left( { - 2} \right)}^i}\,\, \Rightarrow } \sum\limits_{i = 0}^{2019} {C_{2019}^i{{\left( { - 2} \right)}^i}\,\, = - 1} \)
Vậy, tổng các hệ số trong khai triển \({\left( {1 - 2x} \right)^{2019}}\) là -1.
Chọn: A
Cho hình chóp tứ giác S.ABCD có thể tích bằng V. Lấy điểm\(A'\) trên cạnh SA sao cho \(SA' = \dfrac{1}{3}SA\). Mặt phẳng qua \(A'\) và song song với đáy của hình chóp cắt các cạnh SB, SC, SD lần lượt tại B’, C’, D’. Tính theo V thể tích khối chóp S.A’B’C’D’ ?
Do \(\left( {A'B'C'D'} \right)//\left( {ABCD} \right)\) và \(SA' = \dfrac{1}{3}SA\) nên \(\dfrac{{SA'}}{{SA}} = \dfrac{{SB'}}{{SB}} = \dfrac{{SC'}}{{SC}} = \dfrac{{SD'}}{{SD}} = \dfrac{1}{3}\)
\(\begin{array}{l} \Rightarrow \left\{ \begin{array}{l}\dfrac{{{V_{S.A'C'D'}}}}{{{V_{S.ACD}}}} = {\left( {\dfrac{1}{3}} \right)^3} = \dfrac{1}{{27}}\\\dfrac{{{V_{S.A'B'C'}}}}{{{V_{S.ABC}}}} = {\left( {\dfrac{1}{3}} \right)^3} = \dfrac{1}{{27}}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{V_{S.A'C'D'}} = \dfrac{1}{{27}}{V_{S.ACD}} = \dfrac{1}{{54}}{V_{S.ABCD}}\\{V_{S.A'B'C'}} = \dfrac{1}{{27}}{V_{S.ABC}} = \dfrac{1}{{54}}{V_{S.ABCD}}\end{array} \right.\\ \Rightarrow {V_{S.A'B'C'D'}} = \dfrac{1}{{27}}{V_{S.ABCD}} = \dfrac{1}{{27}}V\end{array}\).
Chọn: C
Cho hình chóp có đáy là tam giác đều cạnh cạnh bên vuông góc với đáy và thể tích của khối chóp đó bằng \(\frac{{{a^3}}}{4}\) Tính cạnh bên
Diện tích đáy là: \(S = \dfrac{{{a^2}\sqrt 3 }}{4}\)
Thể tích khối chóp là: \(V = \dfrac{1}{3}Sh \Leftrightarrow \dfrac{{{a^3}}}{4} = \dfrac{1}{3}.\dfrac{{{a^2}\sqrt 3 }}{4}.SA \Leftrightarrow SA =a\sqrt 3 \).
Chọn: C
Cho \(a\), \(b\) là hai số thực dương thỏa mãn \({\log _5}\left( {\dfrac{{4a + 2b + 5}}{{a + b}}} \right) = a + 3b - 4\). Tìm giá trị nhỏ nhất của biểu thức \(T = {a^2} + {b^2}\)
Ta có: \({\log _5}\left( {\dfrac{{4a + 2b + 5}}{{a + b}}} \right) = a + 3b - 4 \Leftrightarrow {\log _5}\left( {\dfrac{{4a + 2b + 5}}{{5a + 5b}}} \right) = a + 3b - 5\)
\( \Leftrightarrow {\log _5}\left( {4a + 2b + 5} \right) - {\log _5}\left( {5a + 5b} \right) = a + 3b - 5\)
\( \Leftrightarrow {\log _5}\left( {4a + 2b + 5} \right) + 4a + 2b + 5 = {\log _5}\left( {5a + 5b} \right) + 5a + 5b\) (1)
Xét hàm số \(f\left( t \right) = {\log _5}t + t,\,\,\left( {t > 0} \right)\) có \(f'\left( t \right) = \dfrac{1}{{t\ln 5}} + 1 > 0,\,\,\forall t > 0\).
\( \Rightarrow \) Hàm số \(f\left( t \right)\) đồng biến trên \(\left( {0; + \infty } \right)\)
\(\left( 1 \right) \Leftrightarrow f\left( {4a + 2b + 5} \right) = f\left( {5a + 5b} \right)\, \Leftrightarrow 4a + 2b + 5 = 5a + 5b \Leftrightarrow a + 3b = 5\)
Với \(a,b > 0,\,\,a + 3b = 5\) ta có:
\(T = {a^2} + {b^2} = \dfrac{1}{{10}}.\left( {{a^2} + {b^2}} \right)\left( {{1^2} + {3^2}} \right) \ge \dfrac{1}{{10}}.{\left( {a.1 + b.3} \right)^2} = \dfrac{1}{{10}}{.5^2} = \dfrac{5}{2}\)
\( \Rightarrow {T_{\min }} = \dfrac{5}{2}\) khi và chỉ khi \(\left\{ \begin{array}{l}a,b > 0\\a + 3b = 5\\\dfrac{a}{1} = \dfrac{b}{3}\end{array} \right.\,\,\,\, \Leftrightarrow \left\{ \begin{array}{l}a = \dfrac{1}{2}\\b = \dfrac{3}{2}\end{array} \right.\).
Chọn: D
Phương trình \({4^x} - m\,{.2^{x + 1}} + 2m = 0\) có hai nghiệm \({x_1}\;,\;{x_2}\) thỏa \({x_1} + {x_2} = 3\) khi
Đặt \({2^x} = t\,\,\left( {t > 0} \right)\). Phương trình \({4^x} - m\,{.2^{x + 1}} + 2m = 0\) (1) trở thành: \({t^2} - 2m\,t + 2m = 0\) (2)
Phương trình (1) có hai nghiệm \({x_1}\;,\;{x_2}\) thỏa \({x_1} + {x_2} = 3 \Leftrightarrow \) Phương trình (2) có hai nghiệm \({t_1}\;,\;{t_2}\) thỏa \({t_1},{t_2} > 0,\,\,\,\,\,{t_1}{t_2} = {2^{{x_1} + {x_2}}} = {2^3} = 8\)
\( \Leftrightarrow \left\{ \begin{array}{l}\Delta ' > 0\\2m = 8\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{m^2} - 2m > 0\\2m = 8\end{array} \right. \Leftrightarrow m = 4\).
Chọn: A
Phương trình \({4^{3x - 2}} = 16\) có nghiệm là
Ta có: \({4^{3x - 2}} = 16 \Leftrightarrow 3x - 2 = {\log _4}16 = 2 \Leftrightarrow x = \dfrac{4}{3}\).
Chọn: C
Trong không gian Oxyz, cho mặt cầu\(\left( S \right)\) tâm \(I(a;b;c)\) bán kính bằng 1, tiếp xúc mặt phẳng \(\left( {Oxz} \right).\) Khẳng định nào sau đây đúng?
Mặt cầu\(\left( S \right)\)tâm \(I(a;b;c)\)bán kính bằng 1, tiếp xúc mặt phẳng \(\left( {Oxz} \right)\,\, \Leftrightarrow \)\(d\left( {I;\left( {Oxz} \right)} \right) = 1\)\( \Leftrightarrow \left| b \right| = 1\).
Chọn: C
Họ các nguyên hàm của hàm số \(f\left( x \right) = {x^4} + {x^2}\) là
\(\int {f\left( x \right)dx} = \int {\left( {{x^4} + {x^2}} \right)dx = \dfrac{{{x^5}}}{5} + \dfrac{{{x^3}}}{3} + C} \).
Chọn: C
Cho tứ diện ABCD có M, N là hai điểm phân biệt trên cạnh AB. Mệnh đề nào sau đây đúng?
Do CM và DN không đồng phẳng \( \Rightarrow \) CM và DN chéo nhau.
Chọn: A
Tìm tổng các nghiệm của phương trình sau \(3\sqrt {5 - x} + 3\sqrt {5x - 4} = 2x + 7\)
ĐKXĐ: \(\dfrac{4}{5} \le x \le 5\)
Ta có:
\(\begin{array}{l}\,\,\,\,\,\,\,3\sqrt {5 - x} + 3\sqrt {5x - 4} = 2x + 7\\ \Leftrightarrow 3\sqrt {5 - x} - 6 + 3\sqrt {5x - 4} - 3 = 2x - 2\\ \Leftrightarrow 3\left( {\sqrt {5 - x} - 2} \right) + 3\left( {\sqrt {5x - 4} - 1} \right) - \left( {2x - 2} \right) = 0\\ \Leftrightarrow \dfrac{{3\left( {1 - x} \right)}}{{\sqrt {5 - x} + 2}} + \dfrac{{3\left( {5x - 5} \right)}}{{\sqrt {5x - 4} + 1}} - \left( {2x - 2} \right) = 0\\ \Leftrightarrow - \dfrac{{3\left( {x - 1} \right)}}{{\sqrt {5 - x} + 2}} + \dfrac{{15\left( {x - 1} \right)}}{{\sqrt {5x - 4} + 1}} - 2\left( {x - 1} \right) = 0\\ \Leftrightarrow - \left( {x - 1} \right)\left[ {\dfrac{3}{{\sqrt {5 - x} + 2}} - \dfrac{{15}}{{\sqrt {5x - 4} + 1}} + 2} \right] = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 1 = 0\\\dfrac{3}{{\sqrt {5 - x} + 2}} - \dfrac{{15}}{{\sqrt {5x - 4} + 1}} + 2 = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = 1\\\dfrac{{15}}{{\sqrt {5x - 4} + 1}} - \dfrac{3}{{\sqrt {5 - x} + 2}} = 2\,\,(*)\end{array} \right.\end{array}\)
Xét \(f\left( x \right) = \dfrac{{15}}{{\sqrt {5x - 4} + 1}} - \dfrac{3}{{\sqrt {5 - x} + 2}},\,\,x \in \left[ {\dfrac{4}{5};5} \right]\) có
\(f'\left( x \right) = - \dfrac{{15.\dfrac{5}{{2\sqrt {5x - 4} }}}}{{{{\left( {\sqrt {5x - 4} + 1} \right)}^2}}} + \dfrac{{3.\dfrac{{ - 1}}{{\sqrt {5 - x} }}}}{{{{\left( {\sqrt {5 - x} + 2} \right)}^2}}} < 0,\)\(\forall x \in \left[ {\dfrac{4}{5};5} \right]\)
\( \Rightarrow f\left( x \right)\) đồng biến trên \(\left( {\dfrac{4}{5};5} \right)\)\( \Rightarrow \) Phương trình (*) có nhiều nhất 1 nghiệm thuộc \(\left[ {\dfrac{4}{5};5} \right]\)
Mà \(f\left( 4 \right) = 2 \Rightarrow x = 4\) là nghiệm duy nhất của (*)
Vậy, phương trình đã cho có tập nghiệm \(S = \left\{ {1;4} \right\}\,\,\, \Rightarrow \) Tổng các nghiệm của phương trình là: 5.
Chọn: A
Tìm tập nghiệm S của phương trình: \({\log _3}(2x + 1) - {\log _3}(x - 1) = 1\).
ĐKXĐ: \(x > 1\)
Ta có:
\(\begin{array}{l}{\log _3}(2x + 1) - {\log _3}(x - 1) = 1\\ \Leftrightarrow {\log _3}(2x + 1) = 1 + {\log _3}(x - 1)\\ \Leftrightarrow lo{g_3}\left( {2x + 1} \right) = {\log _3}\left[ {3\left( {x - 1} \right)} \right]\\ \Leftrightarrow 2x + 1 = 3\left( {x - 1} \right) \Leftrightarrow x = 4\,\,\left( {tm} \right)\end{array}\)
Vậy tập nghiệm S của phương trình là: \(S = \left\{ 4 \right\}\).
Chọn: D
Cho hình trụ có bán kính \(R\) và chiều cao\(\sqrt 3 R\). Hai điểm A, B lần lượt nằm trên hai đường tròn đáy sao cho góc giữa AB và trục d của hình trụ bằng \({30^0}\). Tính khoảng cách giữa AB và trục của hình trụ.
Gọi O, O’ lần lượt là tâm của hai hình tròn đáy (như hình vẽ). Dựng \(AD,\,\,BC\) song song OO’ , với \(C \in \left( O \right)\), \(D \in \left( {O'} \right)\). Gọi M là trung điểm của AC.
Ta có: \(OO'//\left( {ACBD} \right) \Rightarrow d\left( {OO';AB} \right) = d\left( {OO';\left( {ACBD} \right)} \right) = d\left( {O;\left( {ACBD} \right)} \right) = OM\),
(do \(OM \bot AC\), \(OM \bot AD\) \( \Rightarrow OM \bot \left( {ACBD} \right)\))
Ta có: \(\left\{ \begin{array}{l}\widehat {\left( {AB;OO'} \right)} = {30^0}\\OO'//BC\end{array} \right. \Rightarrow \widehat {\left( {AB;BC} \right)} = \widehat {ABC} = {30^0}\)
\(\Delta ABC\) vuông tại C \( \Rightarrow AC = BC.\tan \widehat {ABC} = \sqrt 3 R.\dfrac{1}{{\sqrt 3 }} = R \Rightarrow MC = \dfrac{R}{2}\)
\(\Delta OMC\) vuông tại M \( \Rightarrow OM = \sqrt {O{C^2} - M{C^2}} = \sqrt {{R^2} - \dfrac{{{R^2}}}{4}} = \dfrac{{R\sqrt 3 }}{2}\)\( \Rightarrow d\left( {OO';AB} \right) = \dfrac{{R\sqrt 3 }}{2}\).
Chọn: A
Cho hình chóp đều S.ABCD có cạnh đáy bằng \(a\) và cạnh bên tạo với mặt đáy một góc 60o. Tính thể tích của khối chóp S.ABCD?
Gọi O là tâm của hình vuông ABCD \( \Rightarrow SO \bot \left( {ABCD} \right)\)\( \Rightarrow \widehat {\left( {SC;\left( {ABCD} \right)} \right)} = \widehat {\left( {SC;OC} \right)} = \widehat {SCO} = {60^0}\)
\(ABCD\) là hình vuông cạnh a \( \Rightarrow \left\{ \begin{array}{l}AC = a\sqrt 2 \Rightarrow OC = \dfrac{a}{{\sqrt 2 }}\\{S_{ABCD}} = {a^2}\end{array} \right.\)
\(\Delta SOC\) vuông tại O \( \Rightarrow SO = OC.\tan \widehat {SCO} = \dfrac{a}{{\sqrt 2 }}.\tan {60^0} = \dfrac{{a\sqrt 3 }}{{\sqrt 2 }}\)
Thể tích khối chóp S.ABCD là: \(V = \dfrac{1}{3}{S_{ABCD}}.SO = \dfrac{1}{3}.{a^2}.\dfrac{{a\sqrt 3 }}{{\sqrt 2 }} = \dfrac{{{a^3}\sqrt 6 }}{6}\).
Chọn: D
Cho hàm số \(y = \dfrac{{m{x^3}}}{3} - {x^2} + 2x + 1 - m.\) Tập hợp các giá trị của m để hàm số nghịch biến trên \(\mathbb{R}\) là
+) Với \(m = 0\) ta có \(y = - {x^2} + 2x + 1\) là hàm số bậc hai
\( \Rightarrow \)Hàm số \(y = - {x^2} + 2x + 1\) không nghịch biến trên \(\mathbb{R}\) \( \Rightarrow m = 0\) không thỏa mãn.
+) Với \(m \ne 0\) ta có: \(y = \dfrac{{m{x^3}}}{3} - {x^2} + 2x + 1 - m \Rightarrow y' = m{x^2} - 2x + 2\)
Để hàm số nghịch biến trên \(\mathbb{R}\) thì \(y' \le 0\,\,\forall x \in \mathbb{R} \Leftrightarrow \left\{ \begin{array}{l}m < 0\\\Delta ' \le 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m < 0\\1 - 2m \le 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m < 0\\m \ge \dfrac{1}{2}\end{array} \right. \Leftrightarrow m \in \emptyset \)
Kết luận: \(m \in \emptyset \).
Chọn: D
Trong không gian Oxyz, cho điểm \(M(1; - 2;3)\). Gọi I là hình chiếu vuông góc của M trên trục Ox. Phương trình nào sau đây là phương trình mặt cầu tâm I bán kính IM ?
Hình chiếu của \(M(1; - 2;3)\) lên trục Ox là: \(I(1;0;0) \Rightarrow IM = \sqrt {{0^2} + {2^2} + {3^2}} = \sqrt {13} = R\)
Phương trình mặt cầu tâm I bán kính IM là: \({(x - 1)^2} + {y^2} + {z^2} = 13.\)
Chọn: B
Giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = \sqrt {x - 2} + \sqrt {4 - x} \) lần lượt là M và m. Chọn câu trả lời đúng.
Xét hàm số \(y = f\left( x \right) = \sqrt {x - 2} + \sqrt {4 - x} \) trên đoạn \(\left[ {2;4} \right]\) có:
\(f'\left( x \right) = \dfrac{1}{{2\sqrt {x - 2} }} - \dfrac{1}{{2\sqrt {4 - x} }}\),
\(f'\left( x \right) = 0 \Leftrightarrow \dfrac{1}{{2\sqrt {x - 2} }} - \dfrac{1}{{2\sqrt {4 - x} }} = 0 \Leftrightarrow \sqrt {x - 2} = \sqrt {4 - x} \Leftrightarrow x = 3 \in \left[ {2;4} \right]\)
Ta có: \(f\left( 2 \right) = f\left( 4 \right) = \sqrt 2 ,\,\,\,f\left( 3 \right) = 2 \Rightarrow \) Giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = \sqrt {x - 2} + \sqrt {4 - x} \) lần lượt là \(M = 2\)và \(m = \sqrt 2 \).
Chọn: D
Tính đạo hàm của hàm số: \(y = {\log _2}(2x + 1)\).
\(y = {\log _2}(2x + 1)\)\( \Rightarrow y' = \frac{2}{{(2x + 1)\ln 2}}\).
Chọn: D
Gọi \(S\)là diện tích hình phẳng giới hạn bởi các đồ thị hàm số: \(y = {x^3} - 3x\) ;\(y = x\). Tính \(S\) ?
Giải phương trình \({x^3} - 3x = x \Leftrightarrow {x^3} - 4x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \pm 2\end{array} \right.\)
Diện tích cần tìm là:
\(\begin{array}{l}S = \int\limits_{ - 2}^2 {\left| {{x^3} - 3x - x} \right|dx} = \int\limits_{ - 2}^2 {\left| {{x^3} - 4x} \right|dx} \\\,\,\,\, = \int\limits_{ - 2}^0 {\left| {{x^3} - 4x} \right|dx} + \int\limits_0^2 {\left| {{x^3} - 4x} \right|dx} \\\,\,\,\, = \int\limits_{ - 2}^0 {\left( {{x^3} - 4x} \right)dx} - \int\limits_0^2 {\left( {{x^3} - 4x} \right)dx} \\\,\,\,\, = \left. {\left( {\dfrac{1}{4}{x^4} - 2{x^2}} \right)} \right|_{ - 2}^0 - \left. {\left( {\dfrac{1}{4}{x^4} - 2{x^2}} \right)} \right|_0^2\\\,\,\,\, = \left( {0 - \left( { - 4} \right)} \right) - \left( {\left( { - 4} \right) - 0} \right) = 8\end{array}\)
Chọn: B
Cho hàm số \(y = f\left( x \right)\) thỏa mãn \(f'\left( x \right).f\left( x \right) = {x^4} + {x^2}\). Biết \(f\left( 0 \right) = 2\). Tính \({f^2}\left( 2 \right)\)
Ta có:
\(\begin{array}{l}\,\,\,\,\,\,\,f'\left( x \right).f\left( x \right) = {x^4} + {x^2}\\ \Rightarrow \int\limits_0^2 {f'\left( x \right).f\left( x \right)dx} = \int\limits_0^2 {\left( {{x^4} + {x^2}} \right)} dx\\ \Leftrightarrow \left. {\dfrac{1}{2}{f^2}\left( x \right)} \right|_0^2 = \left. {\left( {\dfrac{1}{5}{x^5} + \dfrac{1}{3}{x^3}} \right)} \right|_0^2\\ \Leftrightarrow \dfrac{1}{2}\left( {{f^2}\left( 2 \right) - {f^2}\left( 0 \right)} \right) = \left( {\dfrac{1}{5}.32 + \dfrac{1}{3}.8} \right) - 0\\ \Leftrightarrow {f^2}\left( 2 \right) - {2^2} = \dfrac{{272}}{{15}} \Leftrightarrow {f^2}\left( 2 \right) = \dfrac{{332}}{{15}}.\end{array}\)
Chọn B.
Đường cong hình bên là đồ thị của hàm số \(y = \dfrac{{{\rm{ax}} + b}}{{cx + d}}\), với a, b, c, d là các số thực. Mệnh đề nào dưới đây đúng?
Quan sát đồ thị hàm số ta thấy, hàm số nghịch biến trên các khoảng \(\left( { - \infty ;1} \right),\,\,\left( {1; + \infty } \right)\,\, \Rightarrow \)\(y' < 0\,\,;\,\,\forall x \ne 1\).
Chọn: D
Cho tứ diện \(ABCD\)có các cạnh \(AB,AC\)và \(AD\) đôi một vuông góc với nhau. Gọi \({G_1},{G_2},{G_3}\)và \({G_4}\) lần lượt là trọng tâm các tam giác \(ABC,ABD,ACD\)và \(BCD\). Biết \(AB = 6a,\)\(AC = 9a\), \(AD = 12a\). Tính theo a thể tích khối tứ diện \({G_1}{G_2}{G_3}{G_4}\).
Gọi I, J, K lần lượt là trung điểm của BD, CD, BC.
Thể tích khối tứ diện vuông ABCD là: \(V = \dfrac{1}{6}.AB.AC.AD = \dfrac{1}{6}.6a.9a.12a = 108{a^3}\)
Ta có: \(\dfrac{{{G_2}{G_4}}}{{AC}} = \dfrac{{I{G_2}}}{{IA}} = \dfrac{{I{G_4}}}{{IC}} = \dfrac{1}{3}\), tương tự: \(\dfrac{{{G_2}{G_3}}}{{BC}} = \dfrac{{{G_3}{G_4}}}{{AB}} = \dfrac{{{G_1}{G_2}}}{{CD}} = \dfrac{{{G_1}{G_4}}}{{AD}} = \dfrac{{{G_1}{G_3}}}{{BD}} = \dfrac{1}{3}\)
\(\dfrac{{{V_{{G_1}{G_2}{G_3}{G_4}}}}}{{{V_{ABCD}}}} = {\left( {\dfrac{1}{3}} \right)^3} \Rightarrow {V_{{G_1}{G_2}{G_3}{G_4}}} = \dfrac{1}{{27}}.108{a^3} = 4{a^3}\).
Chọn: A
Đường cong ở hình bên là đồ thị của một trong bốn hàm số dưới đây. Hàm số đó là hàm số nào?
Quan sát đồ thị hàm số ta thấy: đây không phải đồ thị của hàm số bậc bốn trùng phương
\( \Rightarrow \) Loại phương án A và B
Khi \(x \to + \infty \) thì \(y \to + \infty \,\, \Rightarrow \) Hệ số \(a > 0\,\, \Rightarrow \) Chọn phương án D: \(y = {x^3} - 3{x^2} + 1\).
Chọn: D
Trong không gian \(Oxyz\) cho \(A\left( {1; - 1;2} \right)\), \(f\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\\x = 3\end{array} \right.\), \(C\left( {0;1; - 2} \right)\). Gọi \(M\left( {a;b;c} \right)\) là điểm thuộc mặt phẳng \(\left( {Oxy} \right)\) sao cho biểu thức \(S = \overrightarrow {MA} .\overrightarrow {MB} + 2\overrightarrow {MB} .\overrightarrow {MC} + 3\overrightarrow {MC} .\overrightarrow {MA} \) đạt giá trị nhỏ nhất. Khi đó \(T = 12a + 12b + c\) có giá trị là
\(S = \overrightarrow {MA} .\overrightarrow {MB} + 2\overrightarrow {MB} .\overrightarrow {MC} + 3\overrightarrow {MC} .\overrightarrow {MA} \)
\( = \dfrac{1}{2}\left[ {M{A^2} + M{B^2} - {{\left( {\overrightarrow {MA} - \overrightarrow {MB} } \right)}^2} + 2M{B^2} + 2M{C^2} - 2{{\left( {\overrightarrow {MB} - \overrightarrow {MC} } \right)}^2} + 3M{A^2} + 3M{C^2} - 3{{\left( {\overrightarrow {MA} - \overrightarrow {MC} } \right)}^2}} \right]\)
\( = \dfrac{1}{2}\left[ {4M{A^2} + 3M{B^2} + 5M{C^2} - A{B^2} - 2B{C^2} - 3A{C^2}} \right]\)
Xác định tọa độ điểm \(I\left( {m;n;p} \right)\) sao cho
\(4\overrightarrow {IA} + 3\overrightarrow {IB} + 5\overrightarrow {IC} = \overrightarrow 0 \Leftrightarrow \left\{ \begin{array}{l}4\left( {1 - m} \right) + 3\left( { - 2 - m} \right) + 5\left( {0 - m} \right) = 0\\4\left( { - 1 - n} \right) + 3\left( {0 - n} \right) + 5\left( {1 - n} \right) = 0\\4\left( {2 - p} \right) + 3\left( {3 - p} \right) + 5\left( { - 2 - p} \right) = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m = - \dfrac{1}{6}\\n = \dfrac{1}{{12}}\\p = \dfrac{7}{{12}}\end{array} \right.\,\,\,\,\,\,\, \Rightarrow I\left( { - \dfrac{1}{6};\dfrac{1}{{12}};\dfrac{7}{{12}}} \right)\)
Khi đó:
\(\begin{array}{l}S = \dfrac{1}{2}\left[ {4M{A^2} + 3M{B^2} + 5M{C^2} - A{B^2} - 2B{C^2} - 3A{C^2}} \right]\\\,\,\,\, = \dfrac{1}{2}\left[ {4{{\left( {\overrightarrow {MI} + \overrightarrow {IA} } \right)}^2} + 3{{\left( {\overrightarrow {MI} + \overrightarrow {IB} } \right)}^2} + 5{{\left( {\overrightarrow {MI} + \overrightarrow {IC} } \right)}^2} - A{B^2} - 2B{C^2} - 3A{C^2}} \right]\\\,\,\,\, = \dfrac{1}{2}\left[ {12M{I^2} + 2\overrightarrow {MI} .\left( {4\overrightarrow {IA} + 3\overrightarrow {IB} + 5\overrightarrow {IC} } \right) + 4I{A^2} + 3I{B^2} + 5I{C^2} - A{B^2} - 2B{C^2} - 3A{C^2}} \right]\\\,\,\,\, = \dfrac{1}{2}\left[ {12M{I^2} + 4I{A^2} + 3I{B^2} + 5I{C^2} - A{B^2} - 2B{C^2} - 3A{C^2}} \right]\,\,\left( {do\,\,4\overrightarrow {IA} + 3\overrightarrow {IB} + 5\overrightarrow {IC} = \overrightarrow 0 } \right)\end{array}\)
\( \Rightarrow S\) đạt giá trị nhỏ nhất khi và chỉ khi \(MI\) ngắn nhất \( \Leftrightarrow M\) là hình chiếu của I lên (Oxy)
\( \Leftrightarrow M\left( { - \dfrac{1}{6};\dfrac{1}{{12}};0} \right)\,\,\, \Rightarrow \left\{ \begin{array}{l}a = - \dfrac{1}{6}\\b = \dfrac{1}{{12}}\\c = 0\end{array} \right.\)\( \Rightarrow T = 12a + 12b + c = 12.\dfrac{{ - 1}}{6} + 12.\dfrac{1}{{12}} + 0 = - 1\).
Chọn: D
Tính \(\mathop {\lim }\limits_{x \to - \infty } \dfrac{{2x - 3}}{{\sqrt {{x^2} + 1} - x}}\)?
\(\mathop {\lim }\limits_{x \to - \infty } \dfrac{{2x - 3}}{{\sqrt {{x^2} + 1} - x}} = \mathop {\lim }\limits_{x \to - \infty } \dfrac{{2 - \dfrac{3}{x}}}{{ - \sqrt {1 + \dfrac{1}{{{x^2}}}} - 1}} = \dfrac{2}{{ - 1 - 1}} = - 1\).
Chọn: C
Cho hàm số \(y = f(x)\)có bảng biến thiên sau:
Tìm giá trị cực đại \({y_{{\rm{C\S}}}}\) và giá trị cực tiểu \({y_{{\rm{CT}}}}\) của hàm số đã cho
Tại \(x = - 2\), \(y'\) đổi dấu từ dương sang âm \( \Rightarrow \)Hàm số đạt cực đại tại \(x = - 2\), \({y_{{\rm{C\S}}}} = 3\)
Tại \(x = 2\), \(y'\) đổi dấu từ âm sang dương \( \Rightarrow \)Hàm số đạt cực tiểu tại \(x = 2\), \({y_{{\rm{CT}}}} = 0.\)
Chọn: B
Hàm số \(y = {\left( {4{x^2} - 1} \right)^4}\) có tập xác định là
Do \(4 \in {\mathbb{Z}^ + } \Rightarrow \) Hàm số có TXĐ: \(D = \mathbb{R}\).
Chọn: D
Cho hình phẳng\(\left( H \right)\) giới hạn bởi các đường \(y = {x^2} + 3,{\rm{ }}y = 0,{\rm{ }}x = 0,{\rm{ }}x = 2.\) Gọi \(V\) là thể tích khối tròn xoay được tạo thành khi quay \(\left( H \right)\) xung quanh trục \(Ox\). Mệnh đề nào sau đây đúng?
Thể tích của khối tròn xoay tạo thành là: \(V = \pi \int\limits_0^2 {{{\left( {{x^2} + 3} \right)}^2}{\rm{d}}x} \).
Chọn: A
Chọn ngẫu nhiên một số tự nhiên nhỏ hơn 300. Gọi A là biến cố “số được chọn không chia hết cho 3”. Tính xác suất \(P\left( A \right)\) của biến cố A.
Số phần tử của không gian mẫu: \(n\left( \Omega \right) = 300\)
Số các số tự nhiên nhỏ hơn 300 mà chia hết cho 3 là: \(\dfrac{{297 - 0}}{3} + 1 = 100 \Rightarrow n\left( {\overline A } \right) = 100\)
\( \Rightarrow P\left( {\overline A } \right) = \dfrac{{n\left( {\overline A } \right)}}{{n\left( \Omega \right)}} = \dfrac{{100}}{{300}} = \dfrac{1}{3} \Rightarrow P\left( A \right) = 1 - \dfrac{1}{3} = \dfrac{2}{3}\).
Chọn: A
Tìm điều kiện để hàm số \(y = {\rm{a}}{{\rm{x}}^4} + bx + c(a \ne 0)\) có 3 điểm cực trị.
Hàm bậc bốn trùng phương \(y = a{x^4} + b{x^2} + c\,\,\left( {a \ne 0} \right)\) có 3 điểm cực trị \( \Leftrightarrow pt\,\,y' = 0\) có 3 nghiệm phân biệt \( \Leftrightarrow 4a{x^3} + 2bx = 0\) có 3 nghiệm phân biệt (*)
Mà \(4a{x^3} + 2bx = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\{x^2} = - \dfrac{b}{{2a}}\end{array} \right.\)
Khi đó, (*)\( \Leftrightarrow - \dfrac{b}{{2a}} > 0 \Leftrightarrow ab < 0\).
Chọn: C
Trong không gian \(Oxyz\), cho mặt cầu \((S):{\left( {x + 3} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 1} \right)^2} = 2\). Xác định tọa độ tâm của mặt cầu \(\left( S \right)\).
Mặt cầu \((S):{\left( {x + 3} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 1} \right)^2} = 2\) có tâm \(I\left( { - 3; - 1;1} \right)\).
Chọn: C
Tìm các giá trị thực của tham số m để hàm số \(y = \dfrac{1}{3}{x^3} - m{x^2} + ({m^2} - 4)x + 3\) đạt cực đại tại \(x = 3\).
\(y = f\left( x \right) = \dfrac{1}{3}{x^3} - m{x^2} + ({m^2} - 4)x + 3 \Rightarrow f'\left( x \right) = {x^2} - 2mx + {m^2} - 4\),
Hàm số bậc ba \(y = \dfrac{1}{3}{x^3} - m{x^2} + ({m^2} - 4)x + 3\) đạt cực đại tại
\( \Leftrightarrow \left\{ \begin{array}{l}9 - 6m + {m^2} - 4 = 0\\6 - 2m < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{m^2} - 6m + 5 = 0\\m > 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m = 1\\m = 5\end{array} \right.\\m > 3\end{array} \right. \Leftrightarrow m = 5\)
Vậy, \(m = 5\).
Chọn: B
Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên đoạn \(\left[ {0;1} \right]\) và \(f\left( 0 \right) + f\left( 1 \right) = 0\). Biết \(\int\limits_0^1 {{f^2}\left( x \right){\rm{d}}x} = \dfrac{1}{2},{\rm{ }}\int\limits_0^1 {f'\left( x \right){\rm{cos}}\left( {\pi x} \right){\rm{d}}x} = \dfrac{\pi }{2}\). Tính \(\int\limits_0^1 {f\left( x \right){\rm{d}}x} \).
Ta có :
\(\begin{array}{l}{\rm{ }}\int\limits_0^1 {{\rm{cos}}\left( {\pi x} \right){\rm{d}}\left( {f\left( x \right)} \right)} = \left. {\left( {{\rm{cos}}\left( {\pi x} \right).f\left( x \right)} \right)} \right|_0^1 - \int\limits_0^1 {f\left( x \right){\rm{d}}\left( {{\rm{cos}}\left( {\pi x} \right)} \right)} \\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \left. {\left( {{\rm{cos}}\left( {\pi x} \right).f\left( x \right)} \right)} \right|_0^1 + \pi \int\limits_0^1 {f\left( x \right){\rm{.sin}}\left( {\pi x} \right){\rm{d}}x} \\ \Rightarrow - f\left( 1 \right) - f\left( 0 \right) + \pi \int\limits_0^1 {f\left( x \right){\rm{.sin}}\left( {\pi x} \right){\rm{d}}x} = \dfrac{\pi }{2}\\ \Leftrightarrow - 0 + \pi \int\limits_0^1 {f\left( x \right){\rm{.sin}}\left( {\pi x} \right){\rm{d}}x} = \dfrac{\pi }{2} \Leftrightarrow \int\limits_0^1 {f\left( x \right){\rm{.sin}}\left( {\pi x} \right){\rm{d}}x} = \dfrac{1}{2}\\ \Rightarrow \int\limits_0^1 {{f^2}\left( x \right){\rm{d}}x} - \int\limits_0^1 {f\left( x \right){\rm{.sin}}\left( {\pi x} \right){\rm{d}}x} = 0 \Leftrightarrow \int\limits_0^1 {\left[ {{f^2}\left( x \right) - f\left( x \right){\rm{.sin}}\left( {\pi x} \right)} \right]{\rm{d}}x} = 0\\ \Rightarrow {f^2}\left( x \right) - f\left( x \right){\rm{.sin}}\left( {\pi x} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}f\left( x \right) = 0\\f\left( x \right) = \sin \left( {\pi x} \right)\end{array} \right.\end{array}\)
+) \(f\left( x \right) = 0\) mâu thuẫn với \(\int\limits_0^1 {{f^2}\left( x \right){\rm{d}}x} = \dfrac{1}{2}\)
+) \(f\left( x \right) = \sin \left( {\pi x} \right)\)\( \Rightarrow \int\limits_0^1 {f\left( x \right){\rm{d}}x} = \int\limits_0^1 {\sin \left( {\pi x} \right){\rm{d}}x} = \left. {\dfrac{{ - \cos \left( {\pi x} \right)}}{\pi }} \right|_0^1 = \dfrac{{1 + 1}}{\pi } = \dfrac{2}{\pi }\).
Chọn: C
Cho \({x_0}\) là nghiệm của phương trình \(\sin x\cos x + 2\left( {\sin x + \cos x} \right) = 2\) thì giá trị của \(P = 3 + \sin 2{x_0}\) là
Đặt \(\sin x + \cos x = t,\,\,t \in \left[ { - \sqrt 2 ;\sqrt 2 } \right]\), suy ra: \(\sin x\cos x = \dfrac{{{t^2} - 1}}{2}\).
Phương trình đã cho trở thành:
\(\dfrac{{{t^2} - 1}}{2} + 2t = 2 \Leftrightarrow {t^2} + 4t - 5 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 1\,\,\,\,\,\,\left( {tm} \right)\\t = - 5\,\,\left( {ktm} \right)\end{array} \right.\)
\( \Rightarrow \sin x\cos x = \dfrac{{1 - 1}}{2} = 0 \Leftrightarrow \sin 2x = 0\)
Khi đó, nếu \({x_0}\) là nghiệm của phương trình \(\sin x\cos x + 2\left( {\sin x + \cos x} \right) = 2\) thì \(\sin 2{x_0} = 0\)
\( \Rightarrow P = 3 + \sin 2{x_0} = 3\).
Chọn: A
Trong không gian Oxyz, cho hai điểm A(2;-4;3) và B(2;2;7). Trung điểm của đoạn thẳng AB có tọa độ là
Trung điểm của đoạn thẳng AB có tọa độ là: \((2; - 1;5)\).
Chọn: C
Tính đạo hàm của hàm số \(y = {x^3} + 2x + 1\).
\(y = {x^3} + 2x + 1\)\( \Rightarrow y' = 3{x^2} + 2\).
Chọn: B
Cho hàm số \(y = \dfrac{{2x + 1}}{{x + 2}}\). Khẳng định nào dưới đây đúng?
TXĐ: \(D=\mathbb{R}\backslash \left\{ -2 \right\}\).
Ta có: \(y' = \dfrac{{2.2 - 1.1}}{{{{\left( {x + 2} \right)}^2}}} = \dfrac{3}{{{{\left( {x + 2} \right)}^2}}} > 0\,\,\forall x \in \mathbb{R}\backslash \left\{ { - 2} \right\} \Rightarrow \) Hàm số đồng biến trên \(\left( { - \infty ; - 2} \right)\) và \(\left( -2;+\infty \right)\).
Chọn D.
Với \(a\) là số thực dương khác \(1\) tùy ý, \({\log _{{a^2}}}{a^3}\) bằng
Ta có \({{\log }_{{{a}^{2}}}}{{a}^{3}}=\dfrac{3}{2}{{\log }_{a}}a=\dfrac{3}{2}\).
Chọn A.
Hàm số \(y = \dfrac{1}{3}{x^3} + {x^2} - 3x + 1\) đạt cực tiểu tại điểm
TXĐ: \(D = \mathbb{R}\).
Ta có \(y'={{x}^{2}}+2x-3,\,\,y''=2x+2\).
Hàm số đạt cực tiểu tại
\(x = {x_0} \Leftrightarrow \left\{ \begin{array}{l}
y'\left( {{x_0}} \right) = 0\\
y''\left( {{x_0}} \right) > 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x_0^2 + 2{x_0} - 3 = 0\\
2{x_0} + 2 > 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
\left[ \begin{array}{l}
{x_0} = 1\\
{x_0} = - 3
\end{array} \right.\\
{x_0} > - 1
\end{array} \right. \Leftrightarrow {x_0} = 1\)
Chọn B.
Thể tích của khối chóp có diện tích đáy bằng \(6\) và chiều cao bằng \(4\) là
Ta có \(V=\dfrac{1}{3}.6.4=8\).
Chọn D.
Cho hình hộp đứng \(ABCD.A'B'C'D'\) có đáy \(ABCD\) là hình thoi có hai đường chéo \(AC = a\), \(BD = a\sqrt 3 \) và cạnh bên \(AA' = a\sqrt 2 \). Thể tích \(V\) của khối hộp đã cho là
Ta có \({{S}_{ABCD}}=\dfrac{1}{2}AC.BD=\dfrac{1}{2}.a.a\sqrt{3}=\dfrac{{{a}^{2}}\sqrt{3}}{2}\).
\( \Rightarrow {V_{ABCD.A'B'C'D'}} = AA'.{S_{ABCD}} = a\sqrt 2 .\dfrac{{{a^2}\sqrt 3 }}{2} = \dfrac{{{a^3}\sqrt 6 }}{2}\).
Chọn C.
Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) \(\left( {a \ne 0} \right)\) có đồ thị như hình dưới đây.
Khẳng định nào dưới đây đúng?
Dựa vào đồ thị hàm số ta thấy \(\mathop {\lim }\limits_{x \to + \infty } y = - \infty \Rightarrow a < 0 \Rightarrow \) Loại các đáp án C và D.
Ta có \(y'=3a{{x}^{2}}+2bx+c\).
Do đồ thị hàm số không có cực trị \(\Rightarrow pt\,\,y'=0\) vô nghiệm.
\(\Delta '={{b}^{2}}-3ac<0\).
Vậy \(\left\{ \begin{align} & a<0 \\ & {{b}^{2}}-3ac<0 \\ \end{align} \right.\).
Chọn B.
Cho hàm số \(y = f\left( x \right)\) có bảng xét dấu của đạo hàm như sau.
Hàm số \(y = - 2f\left( x \right) + 2019\) nghịch biến trên khoảng nào trong các khoảng dưới đây?
Ta có: \(y'=-2f'\left( x \right)<0\Leftrightarrow f'\left( x \right)>0\Leftrightarrow x\in \left( -\infty ;-2 \right)\cup \left( -1;2 \right)\cup \left( 4;+\infty \right)\).
\(\Rightarrow \) Hàm số \(y=-2f\left( x \right)+2019\) nghịch biến trên các khoảng \(\left( -\infty ;-2 \right);\,\,\left( -1;2 \right)\) và \(\left( 4;+\infty \right)\).
Chọn B.
Cho \(a\) và \(b\) lần lượt là số hạng thứ hai và thứ mười của một cấp số cộng có công sai \(d \ne 0.\) Giá trị của biểu thức \({\log _2}\left( {\dfrac{{b - a}}{d}} \right)\) là một số nguyên có số ước tự nhiên bằng
Gọi cấp số cộng có số hạng đầu \({u_1}\) và công sai \(d\) thì số hạng thứ hai là \(a = {u_2} = {u_1} + d\) và số hạng thứ \(10\) là \(b = {u_{10}} = {u_1} + 9d\)
Khi đó \({\log _2}\left( {\dfrac{{b - a}}{d}} \right) = {\log _2}\left( {\dfrac{{{u_1} + 9d - {u_1} - d}}{d}} \right) = {\log _2}\left( {\dfrac{{8d}}{d}} \right) = {\log _2}8 = 3.\)
Các ước tự nhiên của \(3\) là \(1\) và \(3.\)
Chọn C.
Cho khối chóp tứ giác \(S.ABCD\)có đáy \(ABCD\) là hình thoi và \(SABC\) là tứ diện đều cạnh \(a\). Thể tích \(V\) của khối chóp \(S.ABCD\) là
Gọi \(H\) là trọng tâm tam giác \(ABC\). Vì \(S.ABC\) là tứ diện đều cạnh \(a\) nên \(SH \bot \left( {ABC} \right)\) hay \(SH \bot \left( {ABCD} \right)\) và \(SA = SB = SC = AB = AC = BC = a\)
Gọi \(O\) là giao điểm hai đường chéo hình thoi \(ABCD\) thì \(BH = \dfrac{2}{3}BO\).
Vì \(ABC\) đều có \(BO\) là trung tuyến nên \(BO = \dfrac{{a\sqrt 3 }}{2}\)
\( \Rightarrow BH = \dfrac{2}{3}BO = \dfrac{2}{3}.\dfrac{{a\sqrt 3 }}{2} = \dfrac{{a\sqrt 3 }}{3}\) và \(BD = 2BO = 2.\dfrac{{a\sqrt 3 }}{2} = a\sqrt 3 .\)
Xét tam giác \(SBH\) vuông tại \(H\) ta có \(SH = \sqrt {S{B^2} - B{H^2}} = \sqrt {{a^2} - {{\left( {\dfrac{{a\sqrt 3 }}{3}} \right)}^2}} = \dfrac{{\sqrt 6 a}}{3}\)
Diện tích hình thoi \(ABCD\) là \({S_{ABCD}} = \dfrac{1}{2}AC.BD = \dfrac{1}{2}a.a\sqrt 3 = \dfrac{{{a^2}\sqrt 3 }}{2}\)
Thể tích khối chóp \(S.ABCD\) là \({V_{S.ABCD}} = \dfrac{1}{3}SH.{S_{ABCD}} = \dfrac{1}{3}.\dfrac{{a\sqrt 6 }}{3}.\dfrac{{{a^2}\sqrt 3 }}{2} = \dfrac{{{a^3}\sqrt 2 }}{6}.\)
Chọn B.
Cho khối chóp tam giác \(S.ABC\) có đỉnh \(S\) và đáy là tam giác \(ABC\). Gọi \(V\) là thể tích của khối chóp. Mặt phẳng đi qua trọng tâm của ba mặt bên của khối chóp chia khối chóp thành hai phần. Tính theo \(V\) thể tích của phần chứa đáy của khối chóp.
Gọi \(M,N,P\) lần lượt là trung điểm các cạnh \(AB,BC,AC\) và \({G_1};{G_2};{G_3}\) lần lượt là trọng tâm các tam giác \(SAB;SBC;SAC.\)
Theo tính chất trọng tâm ta có \(\dfrac{{S{G_1}}}{{SM}} = \dfrac{{S{G_2}}}{{SN}} = \dfrac{{S{G_3}}}{{SP}} = \dfrac{2}{3}\)
Trong \(\left( {SBC} \right)\), qua \({G_2}\) kẻ đường thẳng song song với \(BC\) cắt \(SB,SC\) lần lượt tại \(E\) và \(F.\)
Trong \(\left( {SAC} \right)\), đường thẳng \(F{G_3}\) cắt \(SA\) tại \(D.\)
Lúc này \(\left( {{G_1}{G_2}{G_3}} \right) \equiv \left( {DEF} \right)\)
Vì \(EF//BC \Rightarrow \dfrac{{SE}}{{SB}} = \dfrac{{SF}}{{SC}} = \dfrac{{S{G_2}}}{{SN}} = \dfrac{2}{3}\) (theo định lý Ta-lét)
Lại có trong \(\Delta SPC\) có \(\dfrac{{S{G_3}}}{{SP}} = \dfrac{{SF}}{{SC}} = \dfrac{2}{3} \Rightarrow F{G_3}//PC \Rightarrow DF//BC \Rightarrow \dfrac{{SD}}{{SA}} = \dfrac{{SF}}{{SC}} = \dfrac{2}{3}\)
Từ đó ta có \(\dfrac{{{V_{S.DEF}}}}{{{V_{S.ABC}}}} = \dfrac{{SD}}{{SA}}.\dfrac{{SE}}{{SB}}.\dfrac{{SF}}{{SC}} = \dfrac{2}{3}.\dfrac{2}{3}.\dfrac{2}{3} = \dfrac{8}{{27}} \Rightarrow {V_{S.DEF}} = \dfrac{8}{{27}}V\)
Nên phần chứa đáy của hình chóp là \(V - \dfrac{8}{{27}}V = \dfrac{{19}}{{27}}V\)
Chọn C.
Cho mặt cầu \(\left( S \right)\) tâm \(O\), bán kính bằng 2. \(\left( P \right)\) là mặt phẳng cách \(O\) một khoảng bằng 1 và cắt \(\left( S \right)\) theo một đường tròn \(\left( C \right)\). Hình nón \(\left( N \right)\) có đáy là \(\left( C \right)\), đỉnh thuộc \(\left( S \right)\), đỉnh cách \(\left( P \right)\) một khoảng lớn hơn \(2\). Kí hiệu \({V_1}\), \({V_2}\) lần lượt là thể tích của khối cầu \(\left( S \right)\) và khối nón \(\left( N \right)\). Tỉ số \(\dfrac{{{V_1}}}{{{V_2}}}\) là
Thế tích khối cầu: \({V_1} = \dfrac{4}{3}\pi {R^3} = \dfrac{4}{3}\pi {.2^3} = \dfrac{{32\pi }}{3}\).
Do khối nón có đỉnh thuộc \(\left( S \right)\) và cách \(\left( P \right)\) một khoảng lớn hơn \(2\) nên có chiều cao \(SH = SO + OH = 2 + 1 = 3\).
Thể tích khối nón: \({V_2} = \dfrac{1}{3}\pi .H{B^2}.SH = \dfrac{1}{3}\pi .\left( {O{B^2} - O{H^2}} \right).3 = \pi .\left( {{2^2} - {1^2}} \right) = 3\pi \).
Vậy \(\dfrac{{{V_1}}}{{{V_2}}} = \dfrac{{32\pi }}{3}:3\pi = \dfrac{{32}}{9}\).
Chọn D.