Bất phương trình \({{\log }_{4}}\left( x+2 \right)+x+3<{{\log }_{2}}\left( \frac{2x+1}{x} \right)+{{\left( 1+\frac{1}{x} \right)}^{2}}+2\sqrt{x+2}\) có tập nghiệm là S. Tập nào sau đây là tập con của S?
A. \(\left( {0;\frac{7}{2}} \right).\)
B. \(\left( {1 - 2\sqrt 2 ;1 - \sqrt 5 } \right).\)
C. \(\left( {1 - 2\sqrt 2 ;0} \right).\)
D. (1;2)
Lời giải của giáo viên
Điều kiện: \(\left\{ \begin{array}{l} x + 2 > 0\\ \frac{{2x + 1}}{x} > 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} - 2 < x < - \frac{1}{2}\\ x > 0 \end{array} \right.\,\,\,\,\,\,\,\left( * \right)\)
Bất phương trình đã cho tương đương với bất phương trình:
\({{\log }_{2}}\sqrt{x+2}+x+2-2\sqrt{x+2}<{{\log }_{2}}\left( 2+\frac{1}{x} \right)+{{\left( 2+\frac{1}{x} \right)}^{2}}-2\left( 2+\frac{1}{x} \right)\,\,\,\,\left( 1 \right)\)
+) Xét hàm số \(f\left( t \right)={{\log }_{2}}t+{{t}^{2}}-2t\) trên \(\left( 0;+\infty \right)\)
Ta có \({f}'\left( t \right)=\frac{1}{t\ln 2}+2t-2>\frac{1}{t}+2t-2=t+\frac{{{\left( t-1 \right)}^{2}}}{t}>0,\,\,\forall t>0.\)
Do đó f(t) đồng biến trên \(\left( 0;+\infty \right).\)
Suy ra \(\left( 1 \right)\Leftrightarrow f\left( \sqrt{x+2} \right)<f\left( 2+\frac{1}{x} \right)\Leftrightarrow \sqrt{x+2}<2+\frac{1}{x}\,\,\left( 2 \right)\)
+) Vì (*) nên (2) \(\Leftrightarrow x+2<{{\left( 2+\frac{1}{x} \right)}^{2}}\Leftrightarrow x+2<4+\frac{4}{x}+\frac{1}{{{x}^{2}}}\)
\(\Leftrightarrow {{x}^{3}}-2{{x}^{2}}-4x-1<0\Leftrightarrow x\in \left( -\infty ;-1 \right)\cup \left( \frac{3-\sqrt{13}}{2};\frac{3+\sqrt{13}}{2} \right)\)
Kết hợp điều kiện (*) ta được \(S=\left( -2;-1 \right)\cup \left( 0;\frac{3+\sqrt{13}}{2} \right).\)
CÂU HỎI CÙNG CHỦ ĐỀ
Số phức nào sau đây là số đối của số phức z, biết z có phần thực dương thoả mãn \(\left| z \right|=2\) và biểu diễn số phức z thuộc đường thẳng \(y-\sqrt{3}x=0.\)
Cho hàm số y = f(x) có đạo hàm \({f}'\left( x \right)=\left( x-1 \right){{\left( x+1 \right)}^{6}}{{\left( x-2 \right)}^{5}}.\) Hàm số có bao nhiêu điểm cực trị?
Cho hàm số \(y=\sqrt{x+\frac{1}{x}}\). Giá trị nhỏ nhất của hàm số trên \((0;\,+\infty )\) bằng
Cho hàm số y = f(x) có bảng biến thiên
Khẳng định nào sau đây là đúng?
Nếu \({{\log }_{8}}a+{{\log }_{4}}{{b}^{2}}=5\) và \({{\log }_{4}}{{a}^{2}}+{{\log }_{8}}b=7\) thì giá trị của ab là
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, BC = 2a. Mặt bên SBC là tam giác vuông cân tại S và nằm trong mặt phẳng vuông góc với đáy. Thể tích khối chóp S.ABC là
Trong không gian với hệ trục toạ độ Oxyz, cho đường thẳng \(\Delta :\frac{x}{2}=\frac{y-1}{-1}=\frac{z}{2}\) và đường thẳng \(d:\frac{x+2}{-1}=\frac{y-1}{2}=\frac{z+1}{2}.\) Góc giữa d và \(\Delta \) bằng
Cho hàm số y = f(x) liên tục trên đoạn \(\left[ \frac{1}{2};2 \right]\) và thoả mãn \(f\left( x \right)+2f\left( \frac{1}{x} \right)=3x;\forall x\in {{\mathbb{R}}^{*}}.\) Tính tích phân \(\int\limits_{\frac{1}{2}}^{2}{\frac{f\left( x \right)}{x}dx}.\)
Tìm hệ số của đơn thức \({{a}^{3}}{{b}^{2}}\) trong khai triển nhị thức \({{\left( a+2b \right)}^{5}}.\)
Đồ thị hàm số nào dưới đây nhận đường thẳng x = 1 là đường tiệm cận đứng?
Cho hàm số \(y=\frac{ax+b}{cx+d}\) có đồ thị như hình vẽ. Mệnh đề nào sau đây là mệnh đề đúng?
Trong không gian với hệ trục toạ độ Oxyz, cho mặt phẳng \(\left( P \right):2\left( {{m}^{2}}+m+2 \right)x+\left( {{m}^{2}}-1 \right)y+\left( m+2 \right)z+{{m}^{2}}+m+1=0\) luôn chứa đường thẳng \(\Delta \) cố định khi m thay đổi. Khoảng cách từ gốc toạ độ đến \(\Delta \) là
Trong không gian với hệ toạ độ Oxyz, cho điểm \(A\left( 1;-2;1 \right)\) và mặt phẳng (P): x + 2y + 2z – 1 = 0. Khoảng cách từ A đến mặt phẳng (P) bằng
Tìm các số \(x,y\in \mathbb{R}\) thoả mãn \(\left( 1+2y \right)i=\left( 2i-1 \right)x+1+i.\)
Cho hàm số y = f(x) xác định trên \([0;\,+\infty ),\) liên tục trên khoảng \((0;\,+\infty )\) và có bảng biến thiên như sau:
Tìm tập hợp tất cả các giá trị thực của tham số m sao cho phương trình f(x) = m có hai nghiệm \({{x}_{1}},{{x}_{2}}\) thoả mãn \({{x}_{1}}\in \left( 0;2 \right)\) và \({{x}_{2}}\in \left( 2;\,+\infty \right).\)