Biết đường thẳng \(y=\left( 3m-1 \right)x+6m+3\) cắt đồ thị hàm số \(y={{x}^{3}}-3{{x}^{2}}+1\) tại ba điểm phân biệt sao cho một giao điểm cách đều hai giao điểm còn lại. Khi đó m thuộc khoảng nào dưới đây?
A. \(\left( 1;\frac{3}{2} \right)\)
B. \(\left( 0;1 \right)\)
C. \(\left( \frac{3}{2};2 \right)\)
D. \(\left( -1;0 \right)\)
Lời giải của giáo viên
Phương trình hoành độ giao điểm của hai đồ thị hàm số \(y=\left( 3m-1 \right)x+6m+3\) và đồ thị hàm số \(y={{x}^{3}}-3{{x}^{2}}+1\) là:
\(\left( 3m-1 \right)x+6m+3={{x}^{3}}-3{{x}^{2}}+1\)
\(\Leftrightarrow {{x}^{3}}-3{{x}^{2}}+1-\left( 3m-1 \right)x-6m-3=0\)
\(\Leftrightarrow {{x}^{3}}-3{{x}^{2}}-\left( 3m-1 \right)x-6m-2=0\left( * \right)\)
Gọi \({{x}_{1}},{{x}_{2}},{{x}_{3}}\) là ba nghiệm phân biệt của phương trình (*).
Áp dụng hệ thức Vi-et ta có: \(\left\{ \begin{array}{l} {x_1} + {x_2} + {x_3} = 3{\rm{ }}\left( 1 \right)\\ {x_1}{x_2} + {x_2}{x_3} + {x_3}{x_1} = - \left( {3m - 1} \right){\rm{ }}\left( 2 \right)\\ {x_1}{x_2}{x_3} = 6m + 1{\rm{ }}\left( 3 \right) \end{array} \right.\)
Khi đó ta có tọa độ ba giao điểm của hai đồ thị hàm số đã cho là: \(A\left( {{x}_{1}};{{y}_{1}} \right),B\left( {{x}_{2}};{{y}_{2}} \right)\) và \(C\left( {{x}_{3}};{{y}_{3}} \right).\)
Giả sử B là điểm cách đều A, C \(\Rightarrow \) B là trung điểm của AC \(\Rightarrow {{x}_{1}}+{{x}_{3}}=2{{x}_{2}}.\)
\(\Rightarrow \left( 2 \right)\Leftrightarrow 3{{x}_{2}}=2\Leftrightarrow {{x}_{2}}=1\)
Thay \({{x}_{2}}=1\) vào phương trình (*) ta được:
\(\left( * \right)\Leftrightarrow 1-3-\left( 3m-1 \right)-6m-2=0\)
\(\begin{align} & \Leftrightarrow -4-3m+1-6m=0 \\ & \Leftrightarrow -9m=3 \\ \end{align}\)
\(\Leftrightarrow m=-\frac{1}{3}\)
Với \(m=-\frac{1}{3}\) ta được: \(\left( * \right) \Leftrightarrow {x^3} - 3{x^2} + 2x = 0 \Leftrightarrow x\left( {{x^2} - 3x + 2} \right) = 0 \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = 1\\ x = 2 \end{array} \right.\)
\(\Rightarrow m=-\frac{1}{3}\) thỏa mãn bài toán.
\(\Rightarrow m\in \left( -1;0 \right).\)
CÂU HỎI CÙNG CHỦ ĐỀ
Đồ thị hàm số \(y=\frac{{{x}^{4}}}{2}-{{x}^{2}}+3\) có mấy điểm cực trị
Tính thể tích V của khối lập phương ABCD.A'B'C'D'. Biết \(AC'=a\sqrt{3}.\)
Cho hàm số \(y=a{{x}^{4}}+b{{x}^{2}}+c\) có đồ thị như hình vẽ bên.
Mệnh đề nào dưới đây đúng?
Cho lăng trụ đứng tam giác ABC.A'B'C'. Biết tam giác ABC đều cạnh a và \(AA'=a\sqrt{3}.\) Góc giữa hai đường thẳng AB' và mặt phẳng (A'B'C') bằng bao nhiêu?
Cho hàm số \(f\left( x \right)={{x}^{3}}-3{{x}^{2}}+1\). Có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số \(y=\left| f\left( \sin x+\sqrt{3}\cos x \right)+m \right|\) có giá trị nhỏ nhất không vượt quá 5?
Tìm giá trị thực của tham số \(m\) để đường thẳng \(d:y=\left( 3m+1 \right)x+3+m\) vuông góc với đường thẳng đi qua hai điểm cực trị của đồ thị hàm số \(y={{x}^{3}}-3{{x}^{2}}-1.\)
Hàm số \(y=\left| {{\left( x-1 \right)}^{3}}\left( x+1 \right) \right|\) có bao nhiêu điểm cực trị?
Cho đồ thị hàm số \(y=\frac{\sqrt{4-{{x}^{2}}}}{{{x}^{2}}-3x-4}\) có tất cả bao nhiêu đường tiệm cận?
Có tất cả 120 các chọn 3 học sinh từ nhóm n (chưa biết) học sinh. Số n là nghiệm của phương trình nào sau đây?
Cho hình chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh a, cạnh bên SA vuông góc với đáy và \(SA=2\sqrt{3}a.\) Tính thể tích V của khối chóp S.ABC.
Có bao nhiêu số có ba chữ số đôi một khác nhau mà các chữ số đó thuộc tập hợp \(\left\{ 1;2;3;...;9 \right\}?\)
Cho lăng trụ đứng ABC.A'B'C' có cạnh BC = 2a, góc giữa hai mặt phẳng (ABC) và (A'BC) bằng 60°. Biết diện tích tam giác A'BC bằng \(2{{a}^{3}}.\) Tính thể tích khối lăng trụ ABC.A'B'C'.
Cho hình chóp tứ giác đều có cạnh đáy bằng \(a\) và cạnh bên bằng \(a\sqrt{3}.\) Tính thể tích \(V\) của khối chóp đó theo \(a.\)