Biết rằng đồ thị hàm số \(y = f\left( x \right) = a{x^4} + b{x^3} + c{x^2} + dx + e\) (với \(a,b,c,d,e \in R\) và \(a \ne 0;{\rm{ }}b \ne 0\)) cắt trục hoành tại 4 điểm phân biệt. Khi đó đồ thị hàm số \(g\left( x \right) = {\left[ {f'\left( x \right)} \right]^2} - f''\left( x \right).f\left( x \right) = 0\) cắt trục hoành tại bao nhiêu điểm?
A. 0
B. 2
C. 4
D. 6
Lời giải của giáo viên
Gọi các hoành độ giao điểm của đồ thị hàm số \(y=f(x)\) và trục hoành là \({x_1},{\rm{ }}{x_2},{\rm{ }}{x_3},{\rm{ }}{x_4}.\) Suy ra \(f\left( x \right) = a\left( {x - {x_1}} \right)\left( {x - {x_2}} \right)\left( {x - {x_3}} \right)\left( {x - {x_4}} \right).\)
Đạo hàm \(f'\left( x \right) = a\left( {x - {x_2}} \right)\left( {x - {x_3}} \right)\left( {x - {x_4}} \right) + a\left( {x - {x_1}} \right)\left( {x - {x_3}} \right)\left( {x - {x_4}} \right)\)
\( + \,a\left( {x - {x_1}} \right)\left( {x - {x_2}} \right)\left( {x - {x_4}} \right) + a\left( {x - {x_1}} \right)\left( {x - {x_2}} \right)\left( {x - {x_3}} \right).\)
Ta có \(g\left( {{x_i}} \right) = {\left[ {f'\left( {{x_i}} \right)} \right]^2} - f''\left( {{x_i}} \right).f\left( {{x_i}} \right) = {\left[ {f'\left( {{x_i}} \right)} \right]^2} > 0,{\rm{ }}\forall {x_i}\)
\(g\left( x \right) = 0\) không có nghiệm \(x_i\)
Xét \(x \ne {x_i},\) ta có \(f'\left( x \right) = f\left( x \right)\left( {\frac{1}{{x - {x_1}}} + \frac{1}{{x - {x_2}}} + \frac{1}{{x - {x_3}}} + \frac{1}{{x - {x_4}}}} \right) = f\left( x \right).\sum\limits_{i = 1}^4 {\frac{1}{{x - {x_i}}}} \)
\( \Rightarrow \frac{{f'\left( x \right)}}{{f\left( x \right)}} = \sum\limits_{i = 1}^4 {\frac{1}{{x - {x_i}}}} \Rightarrow {\left( {\frac{{f'\left( x \right)}}{{f\left( x \right)}}} \right)^\prime } = {\left( {\sum\limits_{i = 1}^4 {\frac{1}{{x - {x_i}}}} } \right)^\prime } \Rightarrow \frac{{f''\left( x \right).f\left( x \right) - {{\left[ {f'\left( x \right)} \right]}^2}}}{{{{\left[ {f\left( x \right)} \right]}^2}}} = - \sum\limits_{i = 1}^4 {\frac{1}{{{{\left( {x - {x_i}} \right)}^2}}} < 0} ,\forall x\)
hay \({\left[ {f'\left( x \right)} \right]^2} - f''\left( x \right).f\left( x \right) > 0,{\rm{ }}\forall x \ne {x_i}\)
Vậy trong mọi trường hợp phương trình \(g(x)=0\) đều vô nghiệm.
CÂU HỎI CÙNG CHỦ ĐỀ
Diện tích ba mặt của hình hộp chữ nhật lần lượt là \(15c{m^2},24c{m^2},40c{m^2}\). Thể tích của khối hộp đó là
Cho tam giác ABC vuông tại A với \(AB = a,AC = 2a\) quay xung quanh cạnh AB ta được một khối nón tròn xoay có đường sinh l bằng bao nhiêu ?
Kí hiệu \(z_1, z_2, z_3, z_4\) là bốn nghiệm của phương trình \({z^4} + {z^2} - 6 = 0\). Tính \(S = \left| {{z_1}} \right| + \left| {{z_2}} \right| + \left| {{z_3}} \right| + \left| {{z_4}} \right|\).
Cho hàm số\(y=f(x)\) có đồ thị \(y=f'(x)\) cắt trục Ox tại ba điểm có hoành độ như hình vẽ.
Khẳng định nào dưới đây có thể xảy ra?
Số đường tiệm cận ngang của đồ thị hàm số \(y = x + 1 + \sqrt {{x^2} + 2x + 3} \) là
Cho hình chóp tam giác đều S.ABC có cạnh bên bằng \(2a\), góc giữa cạnh bên và mặt đáy bằng \(30^0\). Tính khoảng cách từ S đến mặt phẳng (ABC)
Phương trình đường tròn (C) có tâm I(1;2) và tiếp xúc với đường thẳng \(\Delta :{\rm{ }}x--2y + 7 = 0\) là:
Cho hình chóp S.ABCD có đáy là hình vuông cạnh \(a, SA\) vuông góc với mặt đáy, SD tạo với mặt phẳng (SAB) một góc bằng \(30^0\). Tính thể tích V của khối chóp.
Có bao nhiêu giá trị nguyên dương của m nhỏ hơn 2018 để phương trình \({e^{\sqrt {{x^2} + \frac{1}{{{x^2}}}} - \sqrt {x + \frac{1}{x} + m} }} = \frac{{{x^3} + m{x^2} + x}}{{{x^4} + 1}}\) có nghiệm thực dương?
Số nghiệm của phương trình \({\log _3}\left( {{x^2} + 4x} \right) + {\log _{\frac{1}{3}}}\left( {2x + 3} \right) = 0\) là
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, AB = 3, BC = 4, đường thẳng SA vuông góc với mặt phẳng (ABC), biết SA = 4. Gọi M, N lần lượt là chiều cao của A lên cạnh SB và SC. Thể tích khối tứ diện AMNC là
Tìm tập xác định của hàm số \(y = \sqrt {{{\log }_{\frac{1}{3}}}\left( {x - 3} \right)} .\)
Cho tập \(X = \left\{ {x \in N\left| {\left( {{x^2} - 4} \right)\left( {x - 1} \right)\left( {2{x^2} - 7x + 3} \right) = 0} \right.} \right\}.\)Tính tổng bình phương S các phần tử của tập X
Cho \(a = {\log _2}m\) và \(A = {\log _m}8m\), với \(0 < m \ne 1\). Khẳng định nào sau đây là đúng?
Biết rằng \(\int\limits_0^\pi {{e^x}\cos xdx} = a{e^\pi } + b\) trong đó \(a,b \in Q\). Tính \(P=a+b\)