Lời giải của giáo viên
Gọi kích thước ba cạnh của hình hộp chữ nhật là \(a, b, c\) (cm).
Vì các mặt là các hình chữ nhật nên diện tích ba mặt lần lượt là:
\(\left\{ \begin{array}{l}
ab = 15\\
bc = 24\\
ac = 40
\end{array} \right. \Rightarrow {\left( {abc} \right)^2} = 15.24.40 \Rightarrow abc = 120.\)
Vậy thể tích của hình hộp chữ nhật là: \(V = abc = 120c{m^3}.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho tam giác ABC vuông tại A với \(AB = a,AC = 2a\) quay xung quanh cạnh AB ta được một khối nón tròn xoay có đường sinh l bằng bao nhiêu ?
Kí hiệu \(z_1, z_2, z_3, z_4\) là bốn nghiệm của phương trình \({z^4} + {z^2} - 6 = 0\). Tính \(S = \left| {{z_1}} \right| + \left| {{z_2}} \right| + \left| {{z_3}} \right| + \left| {{z_4}} \right|\).
Cho hàm số\(y=f(x)\) có đồ thị \(y=f'(x)\) cắt trục Ox tại ba điểm có hoành độ như hình vẽ.
Khẳng định nào dưới đây có thể xảy ra?
Số đường tiệm cận ngang của đồ thị hàm số \(y = x + 1 + \sqrt {{x^2} + 2x + 3} \) là
Cho hình chóp tam giác đều S.ABC có cạnh bên bằng \(2a\), góc giữa cạnh bên và mặt đáy bằng \(30^0\). Tính khoảng cách từ S đến mặt phẳng (ABC)
Phương trình đường tròn (C) có tâm I(1;2) và tiếp xúc với đường thẳng \(\Delta :{\rm{ }}x--2y + 7 = 0\) là:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, AB = 3, BC = 4, đường thẳng SA vuông góc với mặt phẳng (ABC), biết SA = 4. Gọi M, N lần lượt là chiều cao của A lên cạnh SB và SC. Thể tích khối tứ diện AMNC là
Tìm tập xác định của hàm số \(y = \sqrt {{{\log }_{\frac{1}{3}}}\left( {x - 3} \right)} .\)
Biết rằng đồ thị hàm số \(y = f\left( x \right) = a{x^4} + b{x^3} + c{x^2} + dx + e\) (với \(a,b,c,d,e \in R\) và \(a \ne 0;{\rm{ }}b \ne 0\)) cắt trục hoành tại 4 điểm phân biệt. Khi đó đồ thị hàm số \(g\left( x \right) = {\left[ {f'\left( x \right)} \right]^2} - f''\left( x \right).f\left( x \right) = 0\) cắt trục hoành tại bao nhiêu điểm?
Cho hàm số \(y = a{x^4} + b{x^2} + c\) có đồ thị như hình vẽ bên. Mệnh đề nào dưới đây đúng?
Cho hình chóp S.ABCD có đáy là hình vuông cạnh \(a, SA\) vuông góc với mặt đáy, SD tạo với mặt phẳng (SAB) một góc bằng \(30^0\). Tính thể tích V của khối chóp.
Có bao nhiêu giá trị nguyên dương của m nhỏ hơn 2018 để phương trình \({e^{\sqrt {{x^2} + \frac{1}{{{x^2}}}} - \sqrt {x + \frac{1}{x} + m} }} = \frac{{{x^3} + m{x^2} + x}}{{{x^4} + 1}}\) có nghiệm thực dương?
Số nghiệm của phương trình \({\log _3}\left( {{x^2} + 4x} \right) + {\log _{\frac{1}{3}}}\left( {2x + 3} \right) = 0\) là
Cho tập \(X = \left\{ {x \in N\left| {\left( {{x^2} - 4} \right)\left( {x - 1} \right)\left( {2{x^2} - 7x + 3} \right) = 0} \right.} \right\}.\)Tính tổng bình phương S các phần tử của tập X
Cho \(a, b\) là các số thực dương, \(b \ne 1\) thỏa mãn \({a^{\frac{3}{4}}} > {a^{\frac{5}{7}}},{\log _b}\frac{3}{4} < {\log _b}\frac{5}{7}\). Mệnh đề nào dưới đây là đúng?