Câu hỏi Đáp án 2 năm trước 40

Biết rằng hàm số \(f\left( x \right)\) có đồ thị được cho như hình vẽ bên. Tìm số điểm cực trị của hàm số \(y=f\left[ f\left( x \right) \right]\).

A. 5

B. 3

C. 4

Đáp án chính xác ✅

D. 6

Lời giải của giáo viên

verified HocOn247.com

Xét hàm số \(y=f\left[ f\left( x \right) \right]\), \({y}'={f}'\left( x \right).{f}'\left[ f\left( x \right) \right]\);

\(y' = 0 \Leftrightarrow \left[ \begin{array}{l} f'\left( x \right) = 0\\ f'\left[ {f\left( x \right)} \right] = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = 2\\ f\left( x \right) = 0\\ f\left( x \right) = 2 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = 2\\ x = a \in \left( {2; + \infty } \right)\\ x = b \in \left( {a; + \infty } \right) \end{array} \right.\)

Với \(x>b\), ta có \(f\left( x \right)>2\)\(\Rightarrow {f}'\left[ f\left( x \right) \right]>0\)

Với a<x<b, ta có \(0<f\left( x \right)<2\) \(\Rightarrow {f}'\left[ f\left( x \right) \right]<0\)

Với 0<x<a hoặc \(x<0\), ta có \(f\left( x \right)<0\) \(\Rightarrow {f}'\left[ f\left( x \right) \right]>0\)

BBT:

Dựa vào BBT suy ra hàm số \(y=f\left[ f\left( x \right) \right]\) có bốn điểm cực trị.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Có bao nhiêu số nguyên m để hàm số \(y={{x}^{3}}-3{{x}^{2}}-mx+4\) có hai điểm cực trị thuộc khoảng \(\left( -3;3 \right).\)

Xem lời giải » 2 năm trước 142
Câu 2: Trắc nghiệm

Hàm số nào trong các hàm số sau đây là một nguyên hàm của hàm số\(y={{e}^{-2x}}?\)

Xem lời giải » 2 năm trước 54
Câu 3: Trắc nghiệm

Trong không gian với hệ tọa độ Oxyz , cho vectơ \(\overrightarrow{AO}=3\left( \overrightarrow{i}+4\overrightarrow{j} \right)-2\overrightarrow{k}+5\overrightarrow{j}\). Tìm tọa độ của điểm A .

Xem lời giải » 2 năm trước 49
Câu 4: Trắc nghiệm

Cho số phức \(z=a+bi\) \(\left( a,b\in \mathbb{R} \right)\). Khẳng định nào sau đây sai?

Xem lời giải » 2 năm trước 46
Câu 5: Trắc nghiệm

Trong không gian \(O\,xyz\), cho điểm \(A\left( 1;2;-1 \right)\), đường thẳng \(d:\frac{x-1}{2}=\frac{y+1}{1}=\frac{z-2}{-1}\) và mặt phẳng \(\left( P \right):x+y+2z+1=0\). Điểm B thuộc mặt phẳng \(\left( P \right)\) thỏa mãn đường thẳng AB vừa cắt vừa vuông góc với d. Tọa độ điểm B là:

Xem lời giải » 2 năm trước 45
Câu 6: Trắc nghiệm

Xét các số phức z thỏa mãn \(\left| z+2-i \right|+\left| z-4-7i \right|=6\sqrt{2}\) . Gọi m,M lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của \(\left| z-1+i \right|\) . Tính P=m+M .

Xem lời giải » 2 năm trước 43
Câu 7: Trắc nghiệm

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, mặt bên SAB là tam giác vuông cân tại S và nằm trên mặt phẳng vuông góc với đáy. Tính khoảng cách giữa hai đường thẳng AB và SC.

Xem lời giải » 2 năm trước 43
Câu 8: Trắc nghiệm

Số phức liên hợp của số phức z=1-3i là số phức

Xem lời giải » 2 năm trước 43
Câu 9: Trắc nghiệm

Trong không gian với hệ trục \(Oxyz\) , cho mặt cầu \(\left( S \right):{{\left( x-1 \right)}^{2}}+{{\left( y+2 \right)}^{2}}+{{\left( z-3 \right)}^{2}}=12\) và mặt phẳng \(\left( P \right):2x+2y-z-3=0\) . Viết phương trình mặt phẳng \(\left( Q \right)\) song song với \(\left( P \right)\) và cắt \(\left( S \right)\) theo thiết diện là đường tròn \(\left( C \right)\) sao cho khối nón có đỉnh là tâm mặt cầu và đáy là đường tròn \(\left( C \right)\) có thể tích lớn nhất .

Xem lời giải » 2 năm trước 42
Câu 10: Trắc nghiệm

Trong không gian Oxyz, đường thẳng đi qua điểm \(A\left( 1;4;-7 \right)\) và vuông góc với mặt phẳng \(x+2y-2z-3=0\) có phương trình là

Xem lời giải » 2 năm trước 42
Câu 11: Trắc nghiệm

Tìm tọa độ điểm biểu diễn của số phức \(z=\frac{\left( 2-3i \right)\left( 4-i \right)}{3+2i}\).

Xem lời giải » 2 năm trước 42
Câu 12: Trắc nghiệm

Trong không gian \(Oxyz\) cho mặt cầu \(\left( S \right)\) có phương trình:\({{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2x-4y+4z-7=0\). Xác định tọa độ tâm \(I\) và bán kính \(R\) của mặt cầu\(\left( S \right)\):

Xem lời giải » 2 năm trước 42
Câu 13: Trắc nghiệm

Cho a, b là các số thực dương khác 1 thỏa mãn \({{\log }_{a}}b=\sqrt{3}\). Giá trị của \({{\log }_{\frac{\sqrt{b}}{a}}}\left( \frac{\sqrt[3]{b}}{\sqrt{a}} \right)\) là:

Xem lời giải » 2 năm trước 42
Câu 14: Trắc nghiệm

Cho lăng trụ đứng \(ABC.{A}'{B}'{C}'\) có đáy ABC là tam giác vuông cân tại B. Biết AB=3cm, \(B{C}'=3\sqrt{2}cm\). Thể tích khối lăng trụ đã cho là:

Xem lời giải » 2 năm trước 41
Câu 15: Trắc nghiệm

Cho hàm số \(y=f\left( x \right)\) có đồ thị như hình vẽ sau:

Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \(f\left( x \right)=m\) có \(3\) nghiệm phân biệt.

Xem lời giải » 2 năm trước 41

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »