Cắt hình nón (N) bởi mặt phẳng đi qua đỉnh và tạo mặt phẳng chứa đáy một góc bằng 600, ta được thiết diện là tam giác đều cạnh 2a. Diện tích xung quanh của (N) bằng
A. \(2\sqrt{7}\pi {{a}^{2}}\)
B. \(\sqrt{13}\pi {{a}^{2}}\)
C. \(\sqrt{7}\pi {{a}^{2}}\)
D. \(2\sqrt{13}\pi {{a}^{2}}\)
Lời giải của giáo viên
Giả sử hình nón (N) có S là đỉnh và O là tâm đường tròn đáy
Giả sử mp để cho cắt hình nón theo thiết diện là tam giác đều SAB, khi đó ta có l = SA = 2a
Gọi H là trung điểm AB => \(SH = 2a\frac{{\sqrt 3 }}{2} = a\sqrt 3 \)
Ta có góc giữa (SAB) và mp chứa đáy là góc \(\widehat {SHO} = {60^0}\)
Xét \(\Delta\)SHO vuông tại O có \(OH = SH.cos{60^0} = a\sqrt 3 .\frac{1}{2} = \frac{{a\sqrt 3 }}{2}\)
Xét tam giác OAH vuông tại H có bán kính đường tròn đáy là \(R = OA = \sqrt {A{H^2} + O{H^2}} = \sqrt {{a^2} + \frac{{3{a^2}}}{4}} = \frac{{a\sqrt 7 }}{2}\)
Vậy diện tích xung quanh của hình nón (N) là \({S_{xq}} = \pi Rl = \pi \frac{{a\sqrt 7 }}{2}2a = \sqrt 7 \pi {a^2}\)
Chọn C
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình chóp S.ABC có đáy là tam giác vuông cân tại C, AC = 3a và SA vuông gốc với mặt phẳng đáy. Khoảng cách từ B đến mặt phẳng (SAC) bằng
Cho hàm số y = f(x) có bảng xét dấu của đạo hàm như sau:
Số điểm cực trị của hàm số đã cho là:
Có bao nhiêu số nguyên x thỏa mãn \(\left( {{3}^{{{x}^{2}}}}-{{9}^{x}} \right)\left[ {{\log }_{2}}(x+30)-5 \right]\le 0\)?
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên
Trong không gian Oxyz, cho đường thẳng \(d:\frac{x+1}{1}=\frac{y}{1}=\frac{z-1}{2}\) và mặt phẳng (P): 2x + y – z + 3 = 0. Hình chiếu vuông góc của d lên (P) là đường thẳng có phương trình:
Với n là số nguyên dương bất kì, n ≥ 5, công thức nào dưới đây đúng
Cho hai số phức z = 5 + 2i và w = 1 - 4i. Số phức z + w bằng
Cho khối chóp có diện tích đáy B = 3a2 và chiều cao h = a. Thể tích của khối chóp đã cho bằng
Xét các số phức z, w thỏa mãn \(\left| z \right|=1\) và \(\left| \text{w} \right|=2\). Khi \(\left| z+i\overline{\text{w}}+6-8i \right|\) đạt giá trị nhỏ nhất, \(\left| z-\text{w} \right|\) bằng
Cho hàm số f(x) = x3 + ax2 + bx + c với a, b, c là các số thực. Biết hàm số g(x) = f(x) + f’(x) có hai giá trị cực trị là -4 và 2. Diện tích hình phẳng giới hạn bới các đường \(y=\frac{f(x)}{g(x)+6}\) và y = 1 bằng
Trong không gian Oxyz, cho mặt phẳng (P): -2x+5y+z-3=0. Vec tơ nào dưới đây là một vec tơ pháp tuyển của (P)?