Lời giải của giáo viên
Ta có: \(\left( 1+2i \right)\left| z \right|=\frac{z}{\text{w}}+2+3i \Leftrightarrow \left( \left| z \right|-2 \right)+\left( 2\left| z \right|-3 \right)i=\frac{z}{\text{w}}\)
Lấy modul hai vế: \(\sqrt{{{\left( \left| z \right|-2 \right)}^{2}}+{{\left( 2\left| z \right|-3 \right)}^{2}}}=\frac{\left| z \right|}{\left| \text{w} \right|}\)
Đặt \(t=\left| z \right|\) điều kiện t>0. Khi đó phương trình trở thành: \(\sqrt{{{\left( t-2 \right)}^{2}}+{{\left( 2t-3 \right)}^{2}}}=\frac{t}{\left| \text{w} \right|}\)
\(\Rightarrow \frac{1}{\left| \text{w} \right|}=\frac{\sqrt{{{\left( t-2 \right)}^{2}}+{{\left( 2t-3 \right)}^{2}}}}{t}=\sqrt{\frac{5{{t}^{2}}-16t+13}{{{t}^{2}}}}=\sqrt{5-\frac{16}{t}+\frac{13}{{{t}^{2}}}}=\sqrt{\frac{1}{13}+13{{\left( \frac{8}{13}-\frac{1}{t} \right)}^{2}}}\ge \frac{1}{\sqrt{13}}\)
\(\Rightarrow \left| \text{w} \right|\le \sqrt{13}\).
Khi đó \(T=\left| \text{w}+2+3i \right|\le \left| \text{w} \right|+\left| 2+3i \right|\le \sqrt{13}+\sqrt{13}=2\sqrt{13}\).
Dấu bằng xảy ra khi \(\left\{ \begin{align} & \left| \text{w} \right|=\sqrt{13} \\ & \left| z \right|=\frac{13}{8} \\ \end{align} \right.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f\left( x \right)\) có bảng xét dấu của đạo hàm như sau:
Số điểm cực trị của hàm số đã cho là
Cho \({{\log }_{a}}b=2\). Tính \(P={{\log }_{a}}\left( a{{b}^{2}} \right)\).
Biết \(I=\int\limits_{2}^{4}{\frac{2x+1}{{{x}^{2}}+x}\text{d}x} =a\ln 2+b\ln 3+c\ln 5\), với a, b, c là các số nguyên. Khi đó P=2a+3b+4c thuộc khoảng nào sau đây?
Gọi S là tập hợp các số thực m sao cho với mỗi \(m\in S\) có đúng một số phức thỏa mãn \(\left| z-m \right|=6\) và \(\frac{z}{z-4}\) là số thuần ảo. Tính tổng của các phần tử của tập S.
Cho hàm số bậc ba \(y=f\left( x \right)\) có đồ thị như hình vẽ, biết \(f\left( x \right)\) đạt cực tiểu tại điểm x=1 và thỏa mãn \(\left[ f\left( x \right)+1 \right]\) và \(\left[ f\left( x \right)-1 \right]\) lần lượt chia hết cho \({{\left( x-1 \right)}^{2}}\) và \({{\left( x+1 \right)}^{2}}\). Gọi \({{S}_{1}},{{S}_{2}}\) lần lượt là diện tích như trong hình bên. Tính \(2{{S}_{2}}+8{{S}_{1}}\)
Có bao nhiêu giá trị thực của tham số m để giá trị lớn nhất của hàm số \(y=\left| {{x}^{3}}-3x+m \right|\) trên đoạn \(\left[ 0;\ 3 \right]\) bằng 20.
Số nghiệm nguyên của bất phương trình \({\log _3}\frac{{4x + 6}}{x} \le 0\) là
Thể tích của khối hộp chữ nhật có ba kích thước \(3;4;5\) bằng
Một hình nón có bán kính đáy r = 4cm và độ dài đường sinh l = 3cm. Diện tích xung quanh của hình nón đó bằng
Đồ thị của hàm số \(y={{x}^{4}}-3{{x}^{2}}-5\) cắt trục tung tại điểm có tung độ bằng
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) thỏa mãn \(\int\limits_{0}^{\frac{\pi }{3}}{\tan x.f\left( {{\cos }^{2}}x \right)\text{d}x}=\int\limits_{1}^{8}{\frac{f\left( \sqrt[3]{x} \right)}{x}\text{d}x}=6\). Tính \(\int\limits_{\frac{1}{2}}^{\sqrt{2}}{\frac{f\left( {{x}^{2}} \right)}{x}\text{d}x}\)
Một khối lăng trụ có diện tích đáy bằng 3 và đường cao bằng 4. Thể tích của khối lăng trụ đó bằng
Đường cong trong hình vẽ dưới đây là đồ thị của hàm số nào?