Cho dãy số : \( - 1;\frac{1}{3}; - \frac{1}{9};\frac{1}{{27}}; - \frac{1}{{81}}\). Khẳng định nào sai ?
A. Dãy số này không phải là một cấp số nhân
B. Dãy số này là cấp số nhân có \({u_1} = - 1,q = - \frac{1}{3}\)
C. Số hạng tổng quát \({u_n} = {\left( { - 1} \right)^n}.\frac{1}{{{3^{n - 1}}}}\)
D. Là dãy số không tăng, không giảm.
Lời giải của giáo viên
Ta có
\(\begin{array}{l} \frac{1}{3} = - 1.\left( { - \frac{1}{3}} \right)\\ - \frac{1}{9} = \frac{1}{3}.\left( { - \frac{1}{3}} \right)\\ \frac{1}{{27}} = - \frac{1}{9}.\left( { - \frac{1}{3}} \right)\\ - \frac{1}{{81}} = \frac{1}{{27}}.\left( { - \frac{1}{3}} \right) \end{array}\)
Vậy dãy số trên là cấp số nhân với \({u_1} = - 1,q = - \frac{1}{3}\)
Áp dụng công thức số hạng tổng quát cấp số nhân ta có:
\({u_n} = {u_1}.{q^{n - 1}}\)
\(\begin{array}{l} = - 1.{\left( { - \frac{1}{3}} \right)^{n - 1}}\\ = {\left( { - 1} \right)^n}.\frac{1}{{{3^{n - 1}}}} \end{array}\)
CÂU HỎI CÙNG CHỦ ĐỀ
Giá trị nhỏ nhất của hàm số \(y=x+\frac{9}{x}\) trên đoạn \(\left[ 2;4 \right]\) là:
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, cạnh bên hợp với mặt đáy một góc 60o. Thể tích của khối cầu ngoại tiếp khối chóp S.ABCD là:
Trong không gian với hệ tọa độ Oxyz,cho đường thẳng điểm \(I\left( -1;-1;-1 \right)\) và mặt phẳng \(\left( P \right):2x-y+2z=0\). Viết phương trình mặt cầu \(\left( S \right)\) tâm I và tiếp xúc với \(\left( P \right)\)
Cho tứ diện ABCD. Trong tam giác ABD vẽ đường trung tuyến BI và trọng tâm G. Lấy M thuộc đoạn thẳng BC. Tỉ số \(\frac{CM}{CB}\) phải bằng mấy để GM//(ACD)?
Phương trình \({9^{ - 2{x^2} - 3x}} + {2.3^{ - 2{x^2} - 3x}} - 3 = 0\).
Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\). Hàm số luôn đồng biến trên R khi nào?
Trong không gian với hệ tọa độ Oxy cho điểm \(M\left( {2;1; - 3} \right)\) và mặt phẳng \(\left( P \right):x - 2y + z - 3 = 0\). Tìm tọa độ hình chiếu vuông góc H của M trên (P).
Hình chiếu song song của một hình vuông không thể là hình nào trong các hình sau:
Vectơ pháp tuyến của đường thẳng d đi qua điểm phân biệt A(a;0) và B(0;b) là:
Trong không gian với hệ tọa độ Oxyz, cho ba điểm \(A\left( 3;0;0 \right),\ B\left( 0;-4;0 \right),\ C\left( 0;0;4 \right).\) Viết phương trình mặt phẳng \(\left( R \right)\) đi qua ba điểm \(A,\ B,\ C.\)
Cho \(\int\limits_0^1 {\left( {1 - x} \right){e^x}dx} = ae + b\) với \(a,b \in Z\). Trong mặt phẳng tọa độ Oxy khoảng cách từ điểm M(a;b) đến đường thẳng \(\Delta :x + y + 2 = 0\) bằng bao nhiêu?
Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng \(\left( P \right):2x-mz-2=0\) và \(\left( Q \right):x+y+2z+1=0\) . Tìm m để hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) vuông góc với nhau.
Cho tứ diện SABC và hai điểm M, N lần lượt thuộc các cạnh SA, SB sao cho \(\frac{SM}{AM}=\frac{1}{2}, \frac{SN}{BN}=2\). Mặt phẳng \(\left( P \right)\) đi qua hai điểm M, N và song song với cạnh SC, cắt AC, BC lần lượt tại L, K. Tính tỉ số thể tích \(\frac{{{V}_{SCMNKL}}}{{{V}_{SABC}}}\).