Cho đường thẳng d: \(\frac{x}{2}=\frac{y-2}{-3}=\frac{z+1}{2}\) và mặt phẳng (P): x-y-z-2=0. Phương trình hình chiếu vuông góc của d trên (P) là
A.
\(\left\{ \begin{array}{l}
x = 1 - t\\
y = 1 + 2t\\
z = 2 - 3t
\end{array} \right.\)
B.
\(\left\{ \begin{array}{l}
x = 1 - t\\
y = 1 + 2t\\
z = - 2 + 3t
\end{array} \right.\)
C.
\(\left\{ \begin{array}{l}
x = 1 - t\\
y = 1 - 2t\\
z = - 2 - 3t
\end{array} \right.\)
D.
\(\left\{ \begin{array}{l}
x = 1 - t\\
y = 1 + 2t\\
z = - 2 - 3t
\end{array} \right.\)
Lời giải của giáo viên
Đường thẳng d có véc tơ chỉ phương \(\overrightarrow{{{u}_{d}}}=\left( 2\,;\,-3\,;\,2 \right)\)
Mặt phẳng (P) có véc tơ pháp tuyến \(\overrightarrow{{{n}_{P}}}=\left( 1\,;-1\,;\,-1 \right)\).
Mặt phẳng (Q) chứa d và vuông góc với (P);
Đường thẳng \({{d}^{'}}\) là hình chiếu vuông góc của d trên (P), \(d'=\left( P \right)\cap \left( Q \right)\)
Véc tơ pháp tuyến của mặt phẳng (Q) là \(\overrightarrow{{{n}_{Q}}}=\left[ \overrightarrow{{{u}_{d'}}}\,,\,\overrightarrow{{{n}_{P}}} \right]=\left( 5\,;\,4\,;\,1 \right)\)
Véc tơ chỉ phương của \({{d}^{'}}\) là \(\overrightarrow{{{u}_{d'}}}=\left[ \overrightarrow{{{n}_{P}}}\,,\,\overrightarrow{{{n}_{Q}}} \right]=\left( 3\,;\,-6\,;\,9 \right)=-3\left( -1\,;2\,;-3 \right)\)
Ta thấy đường thẳng \({{d}^{'}}\) thuộc (P) nên điểm \({{M}_{0}}\in d'\,\,\Rightarrow {{M}_{0}}\,\in (P)\). Thay tọa độ điểm \({{M}_{0}}\left( 1\,;\,1\,;\,-2 \right)\) ở đáp án A thấy thỏa mãn phương trình (P).
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian Oxyz, cho đường thẳng \(\Delta :\frac{x-1}{2}=\frac{y+2}{-1}=\frac{z+3}{-1}\). Vectơ nào dưới đây là một vectơ chỉ phương của \(\Delta \)?
Cho số phức z thỏa mãn \(\left| z \right|=1\). GTLN của biểu thức \(P=\left| {{z}^{3}}-z+2 \right|\) là:
Với các số thực a, b bất kỳ, mệnh đề nào dưới đây đúng?
Cho hàm số \(y=f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và không có cực trị, đồ thị của hàm số \(y=f\left( x \right)\) là đường cong của hình vẽ bên. Xét hàm số \(h\left( x \right)=\frac{1}{2}{{\left[ f\left( x \right) \right]}^{2}}-2x.f\left( x \right)+2{{x}^{2}}\). Mệnh đề nào sau đây đúng?
Trong không gian Oxyz, cho mặt phẳng \((\alpha )\): \(x-2y+2\text{z}-3=0.\) Điểm nào sau đây nằm trên mặt phẳng \((\alpha )\)?
Với \(0<a\ne 1,0<b\ne 1\), giá trị của \({{\log }_{{{a}^{2}}}}\left( {{a}^{10}}{{b}^{2}} \right)+{{\log }_{\sqrt{a}}}\left( \frac{a}{\sqrt{b}} \right)+{{\log }_{\sqrt[3]{b}}}\left( {{b}^{-2}} \right)\) bằng
Ta có \(C_{n}^{k}\) là số các tổ hợp chập k của một tập hợp gồm n phần tử \(\left( 1\le k\le n \right)\). Chọn mệnh đề đúng.
Tiệm cận đứng của đồ thị hàm số \(y = \frac{{2 - x}}{{x + 3}}\) là
Tìm giá trị của tham số thực m để giá trị nhỏ nhất của hàm số \(y=\frac{2x+m}{x+1}\) trên đoạn \(\left[ 0;4 \right]\) bằng 3.
Phương trình \({{\log }_{3}}\left( 3x-2 \right)=3\) có nghiệm là
Cho hàm số \(y=f\left( x \right)\). Hàm số \(y={f}'\left( x \right)\) có đồ thị như hình vẽ. Số điểm cực trị của hàm số \(y=f\left( x \right)\) bằng
Cho hàm số \(y=f\left( x \right)\) có bảng biến thiên như hình vẽ sau
Mệnh đề nào dưới đây đúng?
Cho hình lập phương \(ABCD.{A}'{B}'{C}'{D}'\) có cạnh bằng 1. Tính khoảng cách d từ điểm A đến mặt phẳng \(\left( BD{A}' \right)\).