Cho hai mặt phẳng song song \(\left( P \right),\left( Q \right)\) và đường thẳng \(\Delta \). Mệnh đề nào sau đây sai?
A. Nếu \(\Delta \) song song với \(\left( P \right)\) thì \(\Delta \) song song với \(\left( Q \right)\).
B. Nếu \(\Delta \) nằm trên \(\left( P \right)\) thì \(\Delta \) song song với \(\left( Q \right)\).
C. Nếu \(\Delta \) nằm trên \(\left( Q \right)\) thì \(\Delta \) song song với \(\left( P \right)\).
D. Nếu \(\Delta \) cắt \(\left( P \right)\) thì \(\Delta \) cắt \(\left( Q \right)\).
Lời giải của giáo viên
Đáp án A: sai vì nếu \(\Delta //\left( P \right)\) thì vẫn có thể xảy ra trường hợp \(\Delta \subset \left( Q \right)\) chứ chưa chắc đã song song.
Đáp án B, C: đúng theo tính chất hai mặt phẳng song song thì mọi đường thẳng nằm trong mặt phẳng này đều song song mặt phẳng kia.
Đáp án D: hiển nhiên đúng.
Chọn A.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và \(y = f'\left( x \right)\) có đồ thị như hình vẽ. Phương trình \(f\left( x \right) = m\) (\(m\) là tham số) có nhiều nhất bao nhiêu nghiệm trong khoảng \(\left( { - 2;6} \right)\)?
Hình nón bán kính đáy \(R\) và đường sinh \(l\) thì có diện tích xung quanh bằng
Tiếp tuyến với đồ thị hàm số \(y = {x^4} - 3{x^2} + 2018\) tại điểm có hoành độ bằng \(1\) có phương trình
Tìm tất cả các giá trị của tham số \(m\) để hàm số \(y = \dfrac{x}{2} - \sqrt {{x^2} - x + m} \) đồng biến trên \(\left( { - \infty ;2} \right)\).
Cho hai số thực \(x;y\) thỏa mãn \(0 < x < 1 < y\). Trong các bất đẳng thức sau, có bao nhiêu bất đẳng thức đúng?
\(\left( 1 \right)\,{\log _x}\left( {1 + y} \right) > {\log _{\frac{1}{y}}}x\)
\(\left( 2 \right)\,{\log _y}\left( {1 + x} \right) > {\log _x}y\)
\(\left( 3 \right)\,{\log _y}x < {\log _{1 + x}}\left( {1 + y} \right)\)
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang cân \(\left( {AB//CD} \right)\). Biết \(AD = 2\sqrt 5 ;AC = 4\sqrt 5 ;AC \bot AD;SA = SB = SC = SD = 7.\) Tính khoảng cách giữa hai đường thẳng \(SA,CD.\)
Cho hàm số \(y = {x^3} + 1\) có đồ thị \(\left( C \right)\). Tìm điểm có hoành độ dương trên đường thẳng \(d:y = x + 1\) mà qua đó kẻ được đúng hai tiếp tuyến tới \(\left( C \right).\)
Hàm số \(y = {x^4} - 2{x^2} + 3\) có số điểm cực trị là
Cho \(\dfrac{{{5^2}\sqrt[3]{5}}}{{{5^{\frac{1}{2}}}}} = {5^x}\) . Giá trị của \(x\) là
Có bao nhiêu số tự nhiên có \(5\) chữ số khác nhau?
Cắt khối trụ có bán kính đáy bằng \(5\) và chiều cao bằng \(10\) bởi một mặt phẳng song song với trục và cách trục một khoảng bằng \(3\) ta được thiết diện là
Tính đạo hàm của hàm số \(y = \ln \left( {{x^2} + x + 1} \right)\).
Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông cân tại \(B;BA = a;SA = a\sqrt 2 \) và \(SA\) vuông góc với mặt phẳng đáy. Góc giữa \(SC\) và mặt phẳng \(\left( {SAB} \right)\) bằng bao nhiêu?