Lời giải của giáo viên
\(z = {z_1} + {z_2} = 2 + 3i - 4 - 5i = - 2 - 2i\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y=h\left( x \right)\) có bảng biến thiên sau:
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
Gọi \(\left( H \right)\) là hình phẳng giới hạn bởi đồ thị hàm số: \(y={{x}^{2}}-4x+4\), trục tung và trục hoành. Xác định k để đường thẳng \(\left( d \right)\) đi qua điểm \(A\left( 0;4 \right)\) có hệ số góc k chia \(\left( H \right)\) thành hai phần có diện tích bằng nhau.
Cho \(\int\limits_{0}^{\frac{\pi }{4}}{\frac{\sqrt{2+3\tan x}}{1+\cos 2x}dx=a\sqrt{5}+b\sqrt{2},\,\,}\) với \(a,\,\,b\in \mathbb{R}.\) Tính giá trị biểu thức A=a+b.
Gieo một con súc sắc ba lần. Xác suất để được mặt số hai xuất hiện cả ba lần là.
Tìm các khoảng đồng biến của hàm số \(y={{x}^{3}}+3{{x}^{2}}+1\).
Cho hình chóp S.ABC có SA=SB=CB=CA, hình chiếu vuông góc của S lên mặt phẳng \(\left( ABC \right)\) trùng với trung điểm I của cạnh AB. Góc giữa đường thẳng SC và mặt phẳng \(\left( ABC \right)\) bằng.
Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt cầu (S) có tâm \(I(\left( 1;-2;3 \right)\) và \(\left( S \right)\) đi qua điểm \(A\left( 3;0;2 \right)\).
Một khối lăng trụ có chiều cao bằng 2a và diện tích đáy bằng \(2{{a}^{2}}\). Tính thể tích khối lăng trụ
Nguyên hàm của hàm số \(f\left( x \right)=\cos 6x\) là
Cho hai số phức \({{z}_{1}}=3-i\) và \({{z}_{2}}=-1+i\). Phần ảo của số phức \({{z}_{1}}{{z}_{2}}\) bằng
Tổng bình phương các nghiệm của phương trình \({\log _{\frac{1}{2}}}\left( {{x^2} - 5x + 7} \right) = 0\) bằng
Trong không gian với hệ tọa độ Oxyz, viết phương trình tham số của đường thẳng \(\Delta :\frac{x-4}{1}=\frac{y+3}{2}=\frac{z-2}{-1}.\)
Đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \(y=\frac{1-x}{-x+2}\) có phương trình lần lượt là
Số giao điểm của đồ thị hàm số \(y=\frac{x+1}{x-1}\) và đường thẳng y=2 là