Cho hàm số bậc 3 \(f\left( x \right)=a{{x}^{3}}+b{{x}^{2}}+cx+d\) và đường thẳng d: \(g\left( x \right)=mx+n\) có đồ thị như hình vẽ. Nếu phần tô màu đen có diện tích bằng \(\frac{1}{2}\), thì phần gạch chéo có diện tích bằng bao nhiêu?
A. 2,5
B. 2
C. 1
D. 1,5
Lời giải của giáo viên
Không mất tính tổng quát, ta tịnh tiến đồ thị sang bên trái 1 đơn vị thì có đồ thị như hình dưới
Ta vẫn gọi đường cong và đường thẳng có phương trình dạng \(f\left( x \right)=a{{x}^{3}}+b{{x}^{2}}+cx+d\) và \(g\left( x \right)=mx+n\).
+ Quan sát đường thẳng đi qua điểm \(M\left( -2;0 \right)\) và \(N\left( -1;1 \right)\) nên đường thẳng có phương trình y=x+2
+ Quan sát đường cong thấy hai điểm cực trị có hoành độ là -1;1, kết hợp với đạo hàm \({f}'\left( x \right)=3a{{x}^{2}}+2bx+c\) suy ra b=0 và \(c=-3\text{a}\).
+ Quan sát giao điểm đồ thị với \(\text{Oy}\) ta thấy \(\text{d=2}\); vậy \(f\left( x \right)=a{{x}^{3}}-3ax+2\)
+ Từ giả thiết về diện tích phần tô đen ta có \(\int\limits_{-1}^{0}{\left( a{{x}^{3}}-3ax-x \right)}\text{d}x=\frac{1}{2}\Leftrightarrow a\int\limits_{-1}^{0}{\left( {{x}^{3}}-3x \right)}\text{d}x-\int\limits_{-1}^{0}{x}\text{d}x=\frac{1}{2}\Leftrightarrow \frac{5}{4}.a-\frac{1}{2}=\frac{1}{2}\Leftrightarrow a=\frac{4}{5}\)
Vậy ta có hai đường có phương trình: \(f\left( x \right)=\frac{4}{5}{{x}^{3}}-\frac{12}{5}x+2\).
+ Diện tích hình gạch chéo bằng \(S=\int\limits_{0}^{1}{\left( \frac{4}{5}{{x}^{3}}-\frac{12}{5}x+2 \right)}\text{d}x=1\)
CÂU HỎI CÙNG CHỦ ĐỀ
Tìm tập nghiệm S của phương trình \({{2}^{x+1}}=8\).
Cho \(\int\limits_{1}^{2}{f\left( x \right)\text{d}x=-3}, \int\limits_{2}^{5}{f\left( x \right)\text{d}x=5}\) và \(\int\limits_{1}^{5}{g\left( x \right)\text{d}x=6}\). Tính tích phân \(I=\int\limits_{1}^{5}{\left[ 2.f\left( x \right)-g\left( x \right) \right]\text{d}x}\).
Tính thể tích V của khối lập phương \(ABCD.{A}'{B}'{C}'{D}'\), biết BB'=2m.
Cho số phức \(w=2-3i\). Điểm biểu diễn số phức liên hợp của w có tọa độ là
Trong không gian với hệ tọa độ Oxyz, cho điểm \(A\left( 1;2;-3 \right),B\left( \frac{3}{2};\frac{3}{2};-\frac{1}{2} \right),C\left( 1;1;4 \right),D\left( 5;3;0 \right).\) Gọi \(\left( {{S}_{1}} \right)\) là mặt cầu tâm A bán kính bằng \(3,\left( {{S}_{2}} \right)\) là mặt cầu tâm B bán kính bằng \(\frac{3}{2}.\) Có bao nhiêu mặt phẳng tiếp xúc với 2 mặt cầu \(\left( {{S}_{1}} \right),\left( {{S}_{2}} \right)\) đồng thời song song với đường thẳng đi qua C và D.
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(\Delta :\left\{ \begin{align} & x=1+t \\ & y=1+t \\ & z=1+2t \\ \end{align} \right.\). Điểm nào sau đây thuộc \(\Delta \)
Cho biểu thức \(P=\sqrt[4]{{{x}^{5}}}\), với x>0. Mệnh đề nào dưới đây là mệnh đề đúng?
Cho cấp số cộng \(\left( {{u}_{n}} \right)\) có: \({{u}_{1}}=-0,1;\,\,d=0,1\). Số hạng thứ 7 của cấp số cộng này là
Có bao nhiêu số nguyên dương x sao cho ứng với mỗi x có không quá 10 số nguyên y thỏa mãn \(\left( {{3}^{y+3}}-3 \right)\left( {{3}^{y}}-x \right)>0\,\,?\)
Trong không gian Oxyz, đường thẳng đi qua gốc tọa độ O và điểm \(B\left( 1;2;3 \right)\) có phương trình tham số là:
Cho hình lăng trụ đều \(ABC.{A}'{B}'{C}'\) có cạnh đáy bằng a, cạnh bên bằng \(a\sqrt{3}\). Góc giữa đường thẳng \({B}'C\) với mặt phẳng đáy bằng
Chọn ngẫu nhiên 2 số trong 10 số nguyên dương đầu tiên. Xác suất để chọn được hai số có tích là một số chẵn là:
Có bao nhiêu giá trị nguyên của tham số \(m\in \left( -2020;2020 \right)\) để \(2{{\text{a}}^{\sqrt{{{\log }_{a}}b}}}\text{ - }{{\text{b}}^{\sqrt{{{\log }_{b}}a}}}>m\sqrt{{{\log }_{a}}b}+1\) với a,b là các số thực lớn hơn 1?
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A và có \(AB=a,\,BC=a\sqrt{3}\). Mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng \(\left( ABC \right)\). Tính thể tích V của khối khóp S.ABC.
Tính tích phân \(I=\int\limits_{-1}^{1}{(4{{x}^{3}}-3)\text{d}x}\).