Lời giải của giáo viên
Ta thấy trên (-1;1) thì y'<0 và mũi tên có chiều hướng xuống.
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian Oxyz, mặt cầu \(\left( S \right) :{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-4x+2y-2=0\) có tọa độ tâm I là
Cho hàm số \(f\left( x \right)=\frac{{{3}^{x}}}{{{3}^{x}}+{{m}^{2}}}\) với m là tham số thực. Gọi S là tập hợp các giá trị của m sao cho \(f\left( a \right)+f\left( b \right)=1\) với mọi số thực a, b thoả mãn \({{e}^{a+b}}\le e\left( a+b \right)\). Số các phần tử của S là
Tính thể tích của khối lăng trụ đứng \(ABCD.{A}'{B}'{C}'{D}'\) có đáy là hình vuông cạnh 5 và \(B{B}'=6\)
Có bao nhiêu số nguyên dương y sao cho ứng với mỗi y có không quá 2019 số nguyên x thỏa mãn bất phương trình \({{x}^{2}}-\left( y+3 \right)x+3y<\left( y-x \right){{\log }_{2}}x\)
Trong không gian với hệ tọa độ Oxyz, cho điểm \(M\left( 1;0\,;\,-1 \right)\), đường thẳng \(\Delta :\frac{x+1}{-1}=\frac{y}{2}=\frac{z-1}{3}\) và mặt phẳng \(\left( P \right):4x+y+z+1=0\). Viết phương trình đường thẳng d đi qua M, cắt \(\Delta \) tại N, cắt \(\left( P \right)\) tại E sao cho M là trung điểm của NE.
Tập nghiệm của bất phương trình \({\log _{\frac{2}{3}}}\left( {2{x^2} - x + 1} \right) < 0\) là
Nghiệm của phương trình \({3^{{x^2} - 5x + 6}} = 1\) là:
Tích phân \(\int_{ - 1}^3 {\left( {3{x^2} - 1} \right)} \;{\rm{d}}x\) bằng
Hàm số nào sau đây có chiều biến thiên khác với chiều biến thiên của các hàm số còn lại.
Trong không gian Oxyz, mặt phẳng \(\left( P \right):\,2x-3y+z-4=0\) không đi qua điểm nào dưới đây?
Trong không gian Oxyz, cho ba điểm \(A\left( -2;1;3 \right), B\left( 5;0;2 \right)\) và \(C\left( 0;2;4 \right)\). Trọng tâm của tam giác ABC có tọa độ là
Trong mặt phẳng tọa độ Oxy, số phức liên hợp của số phức \(z=\left( 1+2i \right)\left( 1-i \right)\) có điểm biểu diễn là điểm nào sau đây?
Cho hàm số f(x) có bảng xét dấu của đạo hàm \({{f}^{\prime }}(x)\) như sau:
Hàm số f(x) có bao nhiêu điểm cực trị?
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l} - 3{x^2} + 5x{\rm{, khi }}x \ge 1\\ 5 - 3x,{\rm{ khi }}x < 1 \end{array} \right.\).
Tính tích phân \(I = 3\int\limits_0^{\frac{\pi }{2}} {\cos xf\left( {\sin x} \right){\rm{d}}x} + 2\int\limits_0^1 {f\left( {3 - 2x} \right){\rm{d}}x} \).
Với a là số thực dương tùy ý, \({{a}^{2}}.{{a}^{3}}\) bằng