Lời giải của giáo viên
Đặt \(t=\frac{x}{2} \Rightarrow \mathrm{d} t=\frac{1}{2} \mathrm{d} x\)
Đổi cận :
\(x=0 \Rightarrow t=0, x=4 \Rightarrow t=2\)
Khi đó \(I=\int_{0}^{4} x f^{\prime}\left(\frac{x}{2}\right) \mathrm{d} x=\int_{0}^{2} 2 t f^{\prime}(t) 2 d t=4 \int_{0}^{2} x f^{\prime}(x) d x\)
Đặt \(\left\{\begin{array}{l} u=x \\ \mathrm{d} v=f^{\prime}(x) \mathrm{d} x \end{array} \Rightarrow\left\{\begin{array}{l} \mathrm{d} u=\mathrm{d} x \\ v=f(x) \end{array}\right.\right.\)
Ta có:
\(I=4\left[\left.x f(x)\right|_{0} ^{2}-\int_{0}^{2} f(x) \mathrm{d} x\right]=4[2 f(2)-4]=4[2.16-4]=112\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và D ,\(S A \perp(A B C D)\) . Góc giữa SB và mặt phẳng đáy bằng 45°, E là trung điểm của SD , \(A B=2 a, A D=D C=a\) . Tính khoảng cách từ B đến ( ACE) .
Cho tứ diện \(S . A B C \text { có } S A=S B=S C=A B=A C=a ; B C=a \sqrt{2}\) . Góc giữa hai đường thẳng AB và SC bằng
Từ các chữ số 1,5,6,7 có thể lập được bao nhiêu số tự nhiên có 4 chữ số khác nhau?
Tìm nghiệm của phương trình \(\log _{9}(x+1)=\frac{1}{2}\)
Tìm tập xác định D của hàm số \(y=\left(x^{2}-2 x+1\right)^{\frac{1}{3}}\)
Cho hàm số \(y=\frac{-x+1}{2 x-1}(C), y=x+m\). Với mọi m đường thẳng ( d) luôn cắt đồ thị (C) tại hai điểm phân biệt A và B . Gọi \(k_{1} ; k_{2}\) , lần lượt là hệ số góc của các tiếp tuyến với (C) tại A và B . Giá trị nhỏ nhất của \(T=k_{1}^{2020}+k_{2}^{2020}\) bằng
Cho hình lập phương \(A B C D \cdot A^{\prime} B^{\prime} C^{\prime} D^{\prime} \text { cạnh } 2 a\) . Gọi M là trung điểm của BB′ và P thuộc cạnh DD′ sao cho \(D P=\frac{1}{4} D D^{\prime}\). Biết mặt phẳng ( AMP) cắt CC′ tại N , thể tích của khối đa diện AMNPBCD bằng
Trong không gian với hệ trục tọa độ Oxyz , cho hai điểm \(A(1 ; 1 ; 2), B(2 ;-1 ; 3)\) . Viết phương trình đường thẳng AB .
Trong không gian với hệ tọa độ Oxyz , cho mặt phẳng \((P): 2 x-z+1=0\) . Tọa độ một vectơ pháp tuyến của mặt phẳng (P) là
Gọi \(x_{1}, x_{2} \) là hai nghiệm nguyên dương của bất phương trình \(\log _{2}(1+x)<2\) . Tính giá trị của \(P=x_{1}+x_{2}\)
Chiều cao của khối trụ có thể tích lớn nhất nội tiếp trong hình cầu có bán kính R là
Cho số phức z thỏa mãn điều kiện \((1+i) \bar{z}-1-3 i=0\) . Tìm phần ảo của số phức
Cho hàm số y =f(x) có bảng biến thiên của đạo hàm y ' như sau:
Bất phương trình \(f(x)<\mathrm{e}^{x}+m\) đúng với mọi \(x \in(-1 ; 1)\)khi và chỉ khi