Cho hàm số \(f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) là \({f}'\left( x \right)={{\left( x-1 \right)}^{2}}\left( x-3 \right)\). Mệnh đề nào dưới đây đúng?
A. Hàm số không có cực trị
B. Hàm số có một điểm cực đại
C. Hàm số có đúng một điểm cực trị.
D. Hàm số có hai điểm cực trị
Lời giải của giáo viên
Cho \({f}'\left( x \right)=0\Leftrightarrow \left[ \begin{align} & x=1 \\ & x=3 \\ \end{align} \right.\)
Bảng biến thiên:
Từ bảng biến thiên ta thấy hàm số có đúng một điểm cực trị và là điểm cực tiểu.
CÂU HỎI CÙNG CHỦ ĐỀ
Có bao nhiêu số nguyên m để hàm số \(y={{x}^{3}}-3{{x}^{2}}-mx+4\) có hai điểm cực trị thuộc khoảng \(\left( -3;3 \right).\)
Hàm số nào trong các hàm số sau đây là một nguyên hàm của hàm số\(y={{e}^{-2x}}?\)
Trong không gian với hệ tọa độ Oxyz , cho vectơ \(\overrightarrow{AO}=3\left( \overrightarrow{i}+4\overrightarrow{j} \right)-2\overrightarrow{k}+5\overrightarrow{j}\). Tìm tọa độ của điểm A .
Cho số phức \(z=a+bi\) \(\left( a,b\in \mathbb{R} \right)\). Khẳng định nào sau đây sai?
Trong không gian \(O\,xyz\), cho điểm \(A\left( 1;2;-1 \right)\), đường thẳng \(d:\frac{x-1}{2}=\frac{y+1}{1}=\frac{z-2}{-1}\) và mặt phẳng \(\left( P \right):x+y+2z+1=0\). Điểm B thuộc mặt phẳng \(\left( P \right)\) thỏa mãn đường thẳng AB vừa cắt vừa vuông góc với d. Tọa độ điểm B là:
Xét các số phức z thỏa mãn \(\left| z+2-i \right|+\left| z-4-7i \right|=6\sqrt{2}\) . Gọi m,M lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của \(\left| z-1+i \right|\) . Tính P=m+M .
Trong không gian Oxyz, đường thẳng đi qua điểm \(A\left( 1;4;-7 \right)\) và vuông góc với mặt phẳng \(x+2y-2z-3=0\) có phương trình là
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, mặt bên SAB là tam giác vuông cân tại S và nằm trên mặt phẳng vuông góc với đáy. Tính khoảng cách giữa hai đường thẳng AB và SC.
Tìm tọa độ điểm biểu diễn của số phức \(z=\frac{\left( 2-3i \right)\left( 4-i \right)}{3+2i}\).
Trong không gian \(Oxyz\) cho mặt cầu \(\left( S \right)\) có phương trình:\({{x}^{2}}+{{y}^{2}}+{{z}^{2}}-2x-4y+4z-7=0\). Xác định tọa độ tâm \(I\) và bán kính \(R\) của mặt cầu\(\left( S \right)\):
Cho a, b là các số thực dương khác 1 thỏa mãn \({{\log }_{a}}b=\sqrt{3}\). Giá trị của \({{\log }_{\frac{\sqrt{b}}{a}}}\left( \frac{\sqrt[3]{b}}{\sqrt{a}} \right)\) là:
Trong không gian với hệ trục \(Oxyz\) , cho mặt cầu \(\left( S \right):{{\left( x-1 \right)}^{2}}+{{\left( y+2 \right)}^{2}}+{{\left( z-3 \right)}^{2}}=12\) và mặt phẳng \(\left( P \right):2x+2y-z-3=0\) . Viết phương trình mặt phẳng \(\left( Q \right)\) song song với \(\left( P \right)\) và cắt \(\left( S \right)\) theo thiết diện là đường tròn \(\left( C \right)\) sao cho khối nón có đỉnh là tâm mặt cầu và đáy là đường tròn \(\left( C \right)\) có thể tích lớn nhất .
Gọi \({{z}_{1}}\), \({{z}_{2}}\) là hai trong các số phức thỏa mãn \(\left| z-1+2i \right|=5\) và \(\left| {{z}_{1}}-{{z}_{2}} \right|=8\). Tìm môđun của số phức \(w={{z}_{1}}+{{z}_{2}}-2+4i\).
Cho hàm số \(y=f\left( x \right)\) có đồ thị như hình vẽ sau:
Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \(f\left( x \right)=m\) có \(3\) nghiệm phân biệt.