Cho hàm số \(f\left( x \right) = \sqrt {2x + 14} + \sqrt {5 - x} \). Trong các khẳng định sau, khẳng định nào đúng? Trên tập xác định, hàm số đã cho
A. đạt giá trị lớn nhất tại x = - 7
B. đạt giá trị lớn nhất bằng \(2\sqrt 6 \)
C. đạt giá trị nhỏ nhất tại x = 1
D. đạt giá trị nhỏ nhất bằng \(2\sqrt 3 \)
Lời giải của giáo viên
Xét hàm số \(f\left( x \right) = \sqrt {2x + 14} + \sqrt {5 - x} \) xác định và liên tục trên [-7;5].
Ta có:
\(\begin{array}{l}
f'\left( x \right) = \frac{1}{{\sqrt {2x + 14} }} - \frac{1}{{2\sqrt {5 - x} }} = 0\\
\Leftrightarrow 2\sqrt {5 - x} = \sqrt {2x + 14}
\end{array}\)
\( \Leftrightarrow \left\{ \begin{array}{l}
x \in \left( { - 7;5} \right)\\
4\left( {5 - x} \right) = 2x + 14
\end{array} \right. \Leftrightarrow x = 1 \in \left( { - 7;5} \right)\).
Ta có: \(\left\{ \begin{array}{l}
f\left( { - 7} \right) = 2\sqrt 3 \\
f\left( 5 \right) = 2\sqrt 6 \\
f\left( 1 \right) = 6
\end{array} \right. \Rightarrow \mathop {\min }\limits_{\left[ { - 7;5} \right]} f\left( x \right) = f\left( { - 7} \right) = 2\sqrt 3 \)
CÂU HỎI CÙNG CHỦ ĐỀ
Xét các điểm số phức z thỏa mãn \(\left( {\overline z + i} \right)\left( {z + 2} \right)\) là số thuần ảo. Trên mặt phẳng tọa độ, tập hợp tất cả các điểm biểu diễn số phức z là một đường tròn có bán kính bằng:
Mỗi hình sau gồm một số hữu hạn đa giác phẳng, tìm hình không là hình đa diện.
Tìm tất cả các giá trị thực của tham số m sao cho đồ thị của hàm số \(y=2x^3-(2+m)x+m\) cắt trục hoành tại 3 điểm phân biệt
Đồ thị hàm số \(y=\frac{{7-2x}}{{x-2}}\) có tiệm cận đứng là đường thẳng?
Phương trình \(\tan x = \sqrt 3 \) có tập nghiệm là
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu có phương trình \({\left( {x - 1} \right)^2} + {\left( {y + 3} \right)^2} + {z^2} = 9\). Tìm tọa độ tâm I và bán kính R của mặt cầu đó.
Cho hàm số \(y = a{x^4} + b{x^2} + c\left( {a \ne 0} \right)\) có đồ thị như hình vẽ. Mệnh đề nào dưới đây là đúng?
Tính đạo hàm của hàm số \(y = {\log _3}\left( {{x^2} - 1} \right)\).
Trong các hình dưới đây hình nào không phải là đa diện?
Cho cấp số cộng (un) có u4 = - 12, u14 = 18. Tổng của 16 số hạng đầu tiên của cấp số cộng là:
Cho hàm số y = f(x) liên tục trên R thỏa mãn f(1) = 1 và \(\int\limits_0^1 {f\left( x \right)dx = \frac{1}{3}} \). Tính tích phân \(I = \int\limits_0^{\frac{\pi }{2}} {\sin 2x.f'\left( {\sin x} \right)} \) dx
Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu \(\left( S \right):{\left( {x - 2} \right)^2} + {y^2} + {z^2} = 9\) và mặt phẳng \(\left( P \right):x + y - z + m = 0\), m là tham số. Biết rằng mặt phẳng (P) cắt mặt cầu (S) theo một đường tròn có bán kính \(r = \sqrt 6 \). Giá trị của tham số m thỏa mãn bằng:
Để đồ thị hàm số \(y = - {x^4} - \left( {m - 3} \right){x^2} + m + 1\) có điểm cực đại mà không có điểm cực tiểu thì tất cả giá trị thực của tham số m là: