Câu hỏi Đáp án 2 năm trước 28

Cho hàm số f(x) có đồ thị như hình vẽ

Số nghiệm thuộc đoạn \(\left[ { - \pi ;\pi } \right]\) của phương trình \(f\left( {4\left| {\sin x} \right|} \right) = 3\) là

A. 3

B. 10

C. 8

Đáp án chính xác ✅

D. 6

Lời giải của giáo viên

verified HocOn247.com

Đặt \(t = 4\left| {\sin x} \right|\), \(x \in \left[ { - \pi ;\pi } \right] \Rightarrow t \in \left[ {0;4} \right]\)

Khi đó phương trình \(f\left( {4\left| {\sin x} \right|} \right) = 3\) trở thành \(f\left( t \right) = 3,\forall t \in \left[ {0\,;\,4} \right]\)

Đây là phương trình hoành độ giao điểm của đồ thị hàm số y = f(t) và đường thẳng y = 3.

Dựa vào đồ thị, ta có \(f\left( t \right) = 3 \Rightarrow \left[ \begin{array}{l} t = {a_1} \in \left( { - 1\,;\,0} \right)\,\,\,\left( L \right)\\ t = {a_2} \in \left( {0\,;\,1} \right)\\ t = {a_3} \in \left( {2\,;\,3} \right) \end{array} \right.\).

Trường hợp 1: \(t = {a_2} \in \left( {0;1} \right)\).

\( \Rightarrow \left| {\sin x} \right| = \frac{{{a_2}}}{4} \in \left( {0\,;\,\frac{1}{4}} \right) \Rightarrow \left[ \begin{array}{l} \sin x = - \frac{{{a_2}}}{4}\, \in \left( { - \frac{1}{4}\,;\,0} \right)\,\,\left( 1 \right)\\ \sin x = \frac{{{a_2}}}{4} \in \left( {0\,;\,\frac{1}{4}} \right)\,\,\,\,\,\,\,\,\left( 2 \right) \end{array} \right.\)

Phương trình (1) cho ta 2 nghiệm phân biệt \({x_1}\,;\,{x_2}\) thuộc khoảng \(\left[ { - \pi \,;\,\pi } \right]\).

Phương trình (2) cho ta 2 nghiệm \({x_3}\,;\,{x_4}\) phân biệt thuộc khoảng \(\left[ { - \pi \,;\,\pi } \right]\).

Trường hợp 2: \(t = {a_3} \in \left( {2;3} \right)\)

\( \Rightarrow \left| {\sin x} \right| = \frac{{{a_3}}}{4} \in \left( {\frac{1}{2};\,\frac{3}{4}} \right) \Rightarrow \left[ \begin{array}{l} \sin x = - \frac{{{a_3}}}{4}\, \in \left( { - \frac{3}{4}\,;\, - \frac{1}{2}} \right)\,\,\left( 3 \right)\\ \sin x = \frac{{{a_3}}}{4} \in \left( {\frac{1}{2};\,\frac{3}{4}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 4 \right) \end{array} \right.\)

Phương trình (3) cho ta 2 nghiệm phân biệt \({x_5}\,;\,{x_6}\) thuộc khoảng \(\left[ { - \pi \,;\,\pi } \right]\).

Phương trình (4) cho ta 2 nghiệm phân biệt \({x_7}\,;\,{x_8}\) thuộc khoảng \(\left[ { - \pi \,;\,\pi } \right]\).

Hình vẽ minh họa các trường hợp

Vậy phương trình có 8 nghiệm phân biệt

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Trong không gian Oxyz, cho mặt phẳng \(\left( Q \right):3\,x-2y+z-3=0.\) Vectơ nào dưới đây là một vectơ pháp tuyến của \(\left( Q \right)\)

Xem lời giải » 2 năm trước 45
Câu 2: Trắc nghiệm

Cho hình chóp S.ABCD có đáy ABCD là hình thoi. Biết rằng tứ diện SABD là tứ diện đều cạnh a. Khoảng cách giữa hai đường thẳng BD và SC bằng

Xem lời giải » 2 năm trước 42
Câu 3: Trắc nghiệm

Với a là số thực dương tùy ý, \({\log _8}\left( {{a^6}} \right)\) bằng

Xem lời giải » 2 năm trước 42
Câu 4: Trắc nghiệm

Diện tích S của hình phẳng giới hạn bởi các đường \(y={{x}^{3}}-6{{x}^{2}}\) và y=6-11x được tính bởi công thức nào dưới đây?

Xem lời giải » 2 năm trước 37
Câu 5: Trắc nghiệm

Cho hàm số y = f(x) có bảng biến thiên như sau:

Hàm số đã cho đồng biến trên khoảng nào dưới đây ?

Xem lời giải » 2 năm trước 37
Câu 6: Trắc nghiệm

Xét \(\int\limits_{0}^{1}{x\sqrt{{{x}^{2}}+1}\text{d}x}\), nếu đặt \(u=\sqrt{{{x}^{2}}+1}\) thì \(\int\limits_{0}^{1}{x\sqrt{{{x}^{2}}+1}\text{d}x}\) bằng

Xem lời giải » 2 năm trước 36
Câu 7: Trắc nghiệm

Có bao nhiêu giá trị nguyên của tham số thực m sao cho hàm số \(y = \frac{1}{3}{x^3} - {x^2} - \left( {3m + 2} \right)x + 2\) nghịch biến trên đoạn có độ dài bằng 4 là

Xem lời giải » 2 năm trước 36
Câu 8: Trắc nghiệm

Tổng số đường tiệm cận đứng và đường tiệm cận ngang của đồ thị hàm số \(y = \frac{{\sqrt {{x^2} + 2x - 3} }}{{2x + 1}}\) là

Xem lời giải » 2 năm trước 36
Câu 9: Trắc nghiệm

Thể tích của khối lập phương có cạnh bằng b là

Xem lời giải » 2 năm trước 36
Câu 10: Trắc nghiệm

Thể tích của khối lăng trụ đứng có đáy là tam giác đều cạnh a và có chiều cao h = a là:

Xem lời giải » 2 năm trước 35
Câu 11: Trắc nghiệm

Cho hàm số \(y = a{x^3} + b{x^2} + cx + d{\rm{ }}\left( {a \ne 0} \right)\) có đồ thị như hình bên. Mệnh đề nào sau đây là đúng?

Xem lời giải » 2 năm trước 35
Câu 12: Trắc nghiệm

Cho hàm số \(f\left( x \right)={{x}^{3}}-3{{x}^{2}}+9x+m\) (m là tham số thực). Gọi  là tập hợp tất cả các giá trị của  sao cho \(\underset{\left[ 0;2 \right]}{\mathop{\text{max}}}\,{{\left[ f\left( x \right) \right]}^{2}}+\underset{\left[ 0;2 \right]}{\mathop{\text{min}}}\,{{\left[ f\left( x \right) \right]}^{2}}=2020\). Số tập con của S là:

Xem lời giải » 2 năm trước 35
Câu 13: Trắc nghiệm

Trong không gian Oxyz, cho đường thẳng \(d:\,\,\left\{ \begin{array}{l} x = 2 + 3t\\ y = \,\,4t\\ z = - 1 - t \end{array} \right.\). Điểm nào dưới đây thuộc d?

Xem lời giải » 2 năm trước 35
Câu 14: Trắc nghiệm

Gọi \({{z}_{0}}\) là nghiệm phức có phần ảo dương của phương trình \({{z}^{2}}-4z+5=0\). Môđun của số phức \(\text{w}=i\left( {{z}_{0}}+2i \right)\) bằng

Xem lời giải » 2 năm trước 34
Câu 15: Trắc nghiệm

Số giao điểm của đồ thị hàm số \(y = \frac{1}{3}{x^3} + {x^2} + 2x + 2020\) với trục hoành là

Xem lời giải » 2 năm trước 34

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »