Câu hỏi Đáp án 2 năm trước 32

Cho hàm số \(f(x)\) liên tục trên R và có đồ thị như hình vẽ. Có bao nhiêu giá trị nguyên của tham số m để phương trình \(f\left( {\left| {\frac{{3\sin x - \cos x - 1}}{{2{\mathop{\rm cosx}\nolimits}  - sinx + 4}}} \right|} \right) = f\left( {{m^2} + 4m + 4} \right)\) có nghiệm?

A. 4

B. 5

C. Vô số 

D. 3

Đáp án chính xác ✅

Lời giải của giáo viên

verified HocOn247.com

Vì \( - 1 \le {\mathop{\rm sinx}\nolimits}  \le 1; - 1 \le cosx \le 1\) nên \(2\cos x - {\mathop{\rm sinx}\nolimits}  >  - 3 \Rightarrow 2{\mathop{\rm cosx}\nolimits}  - sinx + 4 > 0\) 

Đặt \(\frac{{3\sin x - \cos x - 1}}{{2{\mathop{\rm cosx}\nolimits}  - sinx + 4}} = t \Leftrightarrow 3\sin x - \cos x - 1 = t\left( {2{\mathop{\rm cosx}\nolimits}  - sinx + 4} \right)\)

\( \Leftrightarrow \cos x\left( {2t + 1} \right) - {\mathop{\rm sinx}\nolimits} \left( {t + 3} \right) =  - 4t - 1\) 

Phương trình trên có nghiệm khi \({\left( {2t + 1} \right)^2} + {\left( {t + 3} \right)^2} \ge {\left( { - 4t - 1} \right)^2}\) 

\( \Leftrightarrow 5{t^2} + 10t + 10 \ge 16{t^2} + 8t + 1 \Leftrightarrow 11{t^2} - 2t - 9 \le 0 \Leftrightarrow  - \frac{9}{{11}} \le t \le 1 \Rightarrow 0 \le \left| t \right| \le 1\) 

Từ đồ thị hàm số ta thấy hàm số \(f(x)\) đồng biến trên (0;1)

Nên phương trình \(f\left( x \right) = f\left( {\left| t \right|} \right)\) với \(t \in [0;1]\) có nghiệm duy nhất khi \(x = \left| t \right| \Rightarrow x \ge 0\) 

Do đó phương trình \(f\left( {\left| {\frac{{3\sin x - \cos x - 1}}{{2{\mathop{\rm cosx}\nolimits}  - sinx + 4}}} \right|} \right) = f\left( {{m^2} + m + 4} \right)\) có nghiệm

\( \Leftrightarrow \left| t \right| = {m^2} + 4m + 4\) có nghiệm với \(0 \le \left| t \right| \le 1\) 

\( \Leftrightarrow 0 \le {m^2} + 4m + 4 \le 1 \Leftrightarrow {\left( {m + 2} \right)^2} \le 1 \Leftrightarrow  - 3 \le m \le  - 1\) 

Mà \(m \in Z\) nên \(m \in \left\{ { - 3; - 2; - 1} \right\}.\) Vậy có 3 giá trị của m thỏa mãn yêu cầu.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Phương trình \({7^{2{x^2} + 6x + 4}} = 49\) có tổng tất cả các nghiệm bằng

Xem lời giải » 2 năm trước 44
Câu 2: Trắc nghiệm

Cho hàm số \(f(x)\) liên tục trên R và có đồ thị như hình vẽ. Mệnh đề nào sau đây SAI?

Xem lời giải » 2 năm trước 43
Câu 3: Trắc nghiệm

Cho hai số thực x, y thỏa mãn \({x^2} + {y^2} - 4x + 6y + 4 + \sqrt {{y^2} + 6y + 10}  = \sqrt {6 + 4x - {x^2}} .\) Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của biểu thức \(T = \left| {\sqrt {{x^2} + {y^2}}  - a} \right|.\) Có bao nhiêu giá trị nguyên thuộc đoạn [-10;10] của tham số a để \(M \ge 2m?\) 

Xem lời giải » 2 năm trước 43
Câu 4: Trắc nghiệm

Họ nguyên hàm của hàm số \(f\left( x \right) = \frac{1}{{5x + 4}}\) là

Xem lời giải » 2 năm trước 43
Câu 5: Trắc nghiệm

Cho phương trình \(m{\ln ^2}\left( {x + 1} \right) - \left( {x + 2 - m} \right)\ln \left( {x + 1} \right) - x - 2 = 0\,\,(1).\) Tập tất cả giá trị của tham số m để phương trình 1 có các nghiệm, trong đó có hai nghiệm phân biệt thỏa mãn \(0 < {x_1} < 2 < 4 < {x_2}\) là khoảng \(\left( {a; + \infty } \right).\) Khi đó, \(a\) thuộc khoảng

Xem lời giải » 2 năm trước 42
Câu 6: Trắc nghiệm

Cho hình chóp S.ABCD có SA vuông góc với mặt phẳng (ABCD); tứ giác ABCD là hình thang vuông với cạnh đáy AD, BC; \(AD = 3BC = 3a;AB = a,SA = a\sqrt 3 .\) Điểm I thỏa mãn \(\overrightarrow {AD}  = 3\overrightarrow {AI} ;\) M là trung điểm SD, H là giao điểm của AM và SI . Gọi E , F lần lượt là hình chiếu của A lên SB, SC. Tính thể tích V của khối nón có đáy là đường tròn ngoại tiếp tam giác EFH và đỉnh thuộc mặt phẳng (ABCD).

Xem lời giải » 2 năm trước 42
Câu 7: Trắc nghiệm

Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại A, \(AB = a\sqrt 3 ,\) BC = 2a, đường thẳng AC' tạo với mặt phẳng BCC'B' một góc \(30^0\) Diện tích của mặt cầu ngoại tiếp hình lăng trụ đã cho bằng

Xem lời giải » 2 năm trước 41
Câu 8: Trắc nghiệm

Cho tập A có 26 phần tử. Hỏi A có bao nhiêu tập con gồm 6 phần tử?

Xem lời giải » 2 năm trước 41
Câu 9: Trắc nghiệm

Gieo một con súc sắc cân đối và đồng chất, xác suất để mặt có số chấm chẵn xuất hiện là

Xem lời giải » 2 năm trước 41
Câu 10: Trắc nghiệm

Cho a > 0, b > 0, giá trị của biểu thức \(T = 2{\left( {a + b} \right)^{ - 1}}.{\left( {ab} \right)^{\frac{1}{2}}}.{\left[ {1 + \frac{1}{4}\left( {\sqrt {\frac{a}{b}}  - \sqrt {\frac{b}{a}} } \right){}^2} \right]^{\frac{1}{2}}}\) bằng

Xem lời giải » 2 năm trước 41
Câu 11: Trắc nghiệm

Cho khối nón có bán kính đáy \(r = \sqrt 3 \) và chiều cao h = 4. Tính thể tích V của khối nón đã cho.

Xem lời giải » 2 năm trước 41
Câu 12: Trắc nghiệm

Cho hàm số \(y = {x^4} - 2{x^2} + m - 2\) có đồ thị C. Gọi S là tập các giá trị của m sao cho đồ thị C có đúng một tiếp tuyến song song với trục Ox. Tổng tất cả các phần tử của S là 

Xem lời giải » 2 năm trước 41
Câu 13: Trắc nghiệm

Cho hình chóp đều .S ABCD có cạnh AB = a, góc giữa đường thẳng SA và mặt phẳng ABC bằng \(45^0\). Thể tích khối chóp S.ABCD là

Xem lời giải » 2 năm trước 41
Câu 14: Trắc nghiệm

Cho hàm số \(f\left( x \right) = 2x + {e^x}.\) Tìm một nguyên hàm \(F(x)\) của hàm số \(f(x)\) thỏa mãn \(F\left( 0 \right) = 2019\) 

Xem lời giải » 2 năm trước 40
Câu 15: Trắc nghiệm

Tìm tập xác định D của hàm số \(y = {\left( {{x^2} - 3x - 4} \right)^{\sqrt {2 - \sqrt 3 } }}.\) 

Xem lời giải » 2 năm trước 40

📝 Đề thi liên quan

Xem thêm »
Xem thêm »

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »