Cho hàm số \(y=\frac{3x}{5x-2}\). Khẳng định nào sau đây đúng?
A. Đồ thị hàm số có tiệm cận đứng \(y=\frac{2}{5}\).
B. Đồ thị hàm số không có tiệm cận.
C. Đồ thị hàm số có tiệm cận đứng \(x=\frac{3}{5}\).
D. Đồ thị hàm số có tiệm cận ngang \(y=\frac{3}{5}\).
Lời giải của giáo viên
Vì \(\underset{x\to +\infty }{\mathop{\lim }}\,\frac{3x}{5x-2}=\frac{3}{5}\) nên đồ thị hàm số có tiệm cận ngang $y=\frac{3}{5}$.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f\left( x \right)=\ln \left( {{x}^{4}}+2x \right)\). Đạo hàm \({f}'\left( 1 \right)\) bằng
Diện tích xung quanh của hình trụ có bán kính đáy R=4cm và đường sinh l=5cm bằng:
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có một nguyên hàm là \(F\left( x \right)\). Biết \(F\left( 1 \right)=8\), giá trị \(F\left( 9 \right)\) được tính bằng công thức
Tìm tập hợp tất cả các giá trị tham số m để phương trình \({{4}^{{{x}^{2}}-2x+1}}-m{{.2}^{{{x}^{2}}-2x+2}}+3m-2=0\) có 4 nghiệm phân biệt.
Cho số phức \(z=5-2i\). Tìm số phức \(w=iz+\overline{z}\).
Trong không gian Oxyz, mặt cầu \(\left( S \right):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-8x+2y+1=0\) có tọa độ tâm I và bán kính R lần lượt là
Điểm \(A\) trong hình bên dưới là điểm biểu diễn số phức \(z\).
Mệnh đề nào dưới đây đúng?
Cho hàm số \(f\left( x \right)={{x}^{4}}\). Hàm số \(g\left( x \right)=f'\left( x \right)-3{{x}^{2}}-6x+1\) đạt cực tiểu, cực đại lần lượt tại \({{x}_{1}},\text{ }{{\text{x}}_{2}}\). Tính \(m=g\left( x{{ }_{1}} \right)g\left( {{x}_{2}} \right)\).
Cho hàm số \(f\left( x \right)\) xác định và có đạo hàm \({f}'\left( x \right)\) liên tục trên \(\left[ 1\,;\,3 \right],f\left( x \right)\ne 0\) với mọi \(x\in \left[ 1\,;3 \right]\), đồng thời \({f}'\left( x \right){{\left[ 1+f\left( x \right) \right]}^{2}}={{\left[ {{\left( f\left( x \right) \right)}^{2}}\left( x-1 \right) \right]}^{2}}\) và \(f\left( 1 \right)=-1\). Biết rằng \(\int\limits_{1}^{3}{f\left( x \right)\text{d}x}=a\ln 3+b\,\,\,\left( a\in \mathbb{Z},\,\,b\in \mathbb{Z} \right)\), tính tổng \(S=a+{{b}^{2}}\).
Gọi \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right)={{\text{e}}^{-x}}+\cos x\). Tìm khẳng định đúng.
Cho hàm số \(y=\frac{x-1}{x+2}\). Mệnh đề nào sau đây là mệnh đề đúng?
Cho hàm số có \({f}'\left( x \right)\) và \({f}''\left( x \right)\) liên tục trên \(\mathbb{R}\). Biết \({f}'\left( 2 \right)=4\) và \({f}'\left( -1 \right)=-2,\) tính \(\int\limits_{-1}^{2}{{f}''\left( x \right)\text{d}x}\)
Cho hình chóp tứ giác đều có cạnh đáy bằng 2a, cạnh bên bằng 3a. Gọi \(\alpha \) là góc giữa mặt bên và mặt đáy, mệnh đề nào dưới đây đúng?
Biết hai đồ thị hàm số \(y={{x}^{3}}+{{x}^{2}}-2\) và \(y=-{{x}^{2}}+x\) cắt nhau tại ba điểm phân biệt \(A,\,B,\,C\). Khi đó diện tích tam giác ABC bằng
Cho hàm số \(y=f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đạo hàm \({f}'\left( x \right)=\left( x+2 \right){{\left( x-1 \right)}^{3}}\left( 3-x \right)\). Hàm số đạt cực tiểu tại