Tìm tập hợp tất cả các giá trị tham số m để phương trình \({{4}^{{{x}^{2}}-2x+1}}-m{{.2}^{{{x}^{2}}-2x+2}}+3m-2=0\) có 4 nghiệm phân biệt.
A. \(\left( { - \infty ;1} \right) \cup \left( {2; + \infty } \right)\)
B. \(\left( {2; + \infty } \right)\)
C. \(\left[ {2; + \infty } \right)\)
D. \(\left( {1; + \infty } \right)\)
Lời giải của giáo viên
Xét phương trình: \({{4}^{{{x}^{2}}-2x+1}}-m{{.2}^{{{x}^{2}}-2x+2}}+3m-2=0\text{ }{{\text{ }}^{\left( 1 \right)}}\)
Đặt \(t={{2}^{{{x}^{2}}-2x+1}}={{2}^{{{\left( x-1 \right)}^{2}}}}\). Do đó, ta có \({{\left( x-1 \right)}^{2}}={{\log }_{2}}t\). Điều kiện \(\left( t\ge 1 \right)\)
Ta có phương trình: (1) trở thành: \({{t}^{2}}-2mt+3m-2=0\text{ }{{\text{ }}^{\left( 2 \right)}}\)
Ta nhận thấy mỗi giá trị t>1 cho hai giá trị x tương ứng. Như vậy phương trình (1) có 4 nghiệm phân biệt khi và chỉ khi phương trình (2) có 2 nghiệm thỏa: \(1<{{t}_{1}}<{{t}_{2}}\).
\(\left( 2 \right)\Leftrightarrow \left( 2t-3 \right)m={{t}^{2}}-2\).
Nhận xét: \(t=\frac{3}{2}\), không là nghiệm phương trình.
Xét \(t\ne \frac{3}{2}, \left( 2 \right)\Leftrightarrow m=\frac{{{t}^{2}}-2}{2t-3}\). Xét hàm \(g\left( t \right)=\frac{{{t}^{2}}-2}{2t-3}\) trên \(\left( 1;+\infty \right)\backslash \left\{ \frac{3}{2} \right\}\)
\(g'\left( t \right)=\frac{2{{t}^{2}}-6t+4}{{{\left( 2t-3 \right)}^{2}}}\); \(g'\left( t \right)=0\Leftrightarrow \left[ \begin{align} & t=1 \\ & t=2 \\ \end{align} \right.\)
Dựa vào bảng biến thiên, ta cần m>2.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho số phức \(z=5-2i\). Tìm số phức \(w=iz+\overline{z}\).
Cho hàm số \(y=\frac{x-1}{x+2}\). Mệnh đề nào sau đây là mệnh đề đúng?
Giá trị nhỏ nhất của hàm số \(y={{x}^{3}}-2{{x}^{2}}-4x+5\) trên đoạn \(\left[ 1\,;\,3 \right]\) bằng
Cho hàm số \(f\left( x \right)=\ln \left( {{x}^{4}}+2x \right)\). Đạo hàm \({f}'\left( 1 \right)\) bằng
Diện tích xung quanh của hình trụ có bán kính đáy R=4cm và đường sinh l=5cm bằng:
Cho hình chóp tứ giác đều có cạnh đáy bằng 2a, cạnh bên bằng 3a. Gọi \(\alpha \) là góc giữa mặt bên và mặt đáy, mệnh đề nào dưới đây đúng?
Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có một nguyên hàm là \(F\left( x \right)\). Biết \(F\left( 1 \right)=8\), giá trị \(F\left( 9 \right)\) được tính bằng công thức
Cho hàm số \(y=\frac{3x}{5x-2}\). Khẳng định nào sau đây đúng?
Trong không gian Oxyz, mặt cầu \(\left( S \right):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-8x+2y+1=0\) có tọa độ tâm I và bán kính R lần lượt là
Gọi \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right)={{\text{e}}^{-x}}+\cos x\). Tìm khẳng định đúng.
Cho hàm số \(f\left( x \right)\) xác định và có đạo hàm \({f}'\left( x \right)\) liên tục trên \(\left[ 1\,;\,3 \right],f\left( x \right)\ne 0\) với mọi \(x\in \left[ 1\,;3 \right]\), đồng thời \({f}'\left( x \right){{\left[ 1+f\left( x \right) \right]}^{2}}={{\left[ {{\left( f\left( x \right) \right)}^{2}}\left( x-1 \right) \right]}^{2}}\) và \(f\left( 1 \right)=-1\). Biết rằng \(\int\limits_{1}^{3}{f\left( x \right)\text{d}x}=a\ln 3+b\,\,\,\left( a\in \mathbb{Z},\,\,b\in \mathbb{Z} \right)\), tính tổng \(S=a+{{b}^{2}}\).
Điểm \(A\) trong hình bên dưới là điểm biểu diễn số phức \(z\).
Mệnh đề nào dưới đây đúng?
Cho hàm số \(f\left( x \right)={{x}^{4}}\). Hàm số \(g\left( x \right)=f'\left( x \right)-3{{x}^{2}}-6x+1\) đạt cực tiểu, cực đại lần lượt tại \({{x}_{1}},\text{ }{{\text{x}}_{2}}\). Tính \(m=g\left( x{{ }_{1}} \right)g\left( {{x}_{2}} \right)\).
Trong không gian Oxyz, cho bốn điểm \(A\left( 2\,;\,0\,;\,1 \right), B\left( 3\,;\,1\,;\,5 \right), C\left( 1\,;\,2\,;\,0 \right), D\left( 4\,;\,2\,;\,1 \right)\). Gọi \(\left( \alpha \right)\) là mặt phẳng đi qua D sao cho ba điểm A, B, C nằm cùng phía đối với \(\left( \alpha \right)\) và tổng khoảng cách từ các điểm A, B, C đến mặt phẳng \(\left( \alpha \right)\) là lớn nhất. Giả sử phương trình \(\left( \alpha \right)\) có dạng: 2x+my+nz-p=0. Khi đó, T=m+n+p bằng: